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ABSTRACT

Double dissociations play an important role in neuropsychology, but they are often identified through
subjective estimates of ‘‘high’’ versus ‘‘low’’ performance, without considering the probability that such an
outcome might have occurred by chance. To determine whether two measures ‘‘come apart’’ in an interesting
way in brain-damaged patients, it is important to know the degree to which variance in one measure can be
predicted by variance in the other. This study introduces a statistical procedure to determine the probability
of a double dissociation when the correlation between measures is taken into account. Different quantitative
definitions of dissociations were compared in two large samples of neurological patients, and applied to four
pairs of measures (two for language, two for hemispatial neglect) with different degrees of intercorrelation
(ranging from þ.21 to þ.84). If the correlation between measures is not taken into account, large numbers of
dissociated cases may be missed, especially for measures that are highly correlated. There are also qualitative
differences between methods in the identity of those individuals who meet each definition.

Early in the 19th century, investigators inter-

ested in the relations between brain and mental

faculties became involved in the search for

associations between specific brain lesions

and the loss of behavioral functions (Gall &

Spurzheim, 1809). The birth of this anatomo-

clinical correlation method was accompanied by

some powerful insights into the ‘‘necessary and

sufficient conditions’’ to test hypotheses con-

cerning the association between functional loss

and a lesion to some specific location in the

brain. The young physician Bouillaud (1825)

described with extreme clarity the principle of

double dissociation: ‘‘Two activities are func-

tionally separate if they can be disrupted in

isolation from each other’’ (discussed in Luz-

zatti & Whitaker, 2001).

The logic of double dissociations has had

an immense influence on neuropsychological

research since the second half of the 19th century,

but the first clear operational definition did not

appear until halfway through the 20th century, in

an influential paper by Teuber (1955) proclaiming

that a double dissociation of symptoms is neces-

sary to establish specificity of functions. Increas-

ingly sophisticated versions of this concept have

developed over the years (Bates, Appelbaum, &

Allard, 1991; Bates, McDonald, MacWhinney, &

Appelbaum, 1991; Bub & Bub, 1988; Caramazza,

1986; Dunn & Kirsner, 1988, 2003; Goodglass,
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1993; Kinsbourne, 1971; Marin, Saffran, &

Schwartz, 1976; Shallice, 1988; Weiskrantz,

1968), but the classical formulation can be

described as follows:

Two groups or two single cases (P1 and P2)

show differential impairments in Tasks A and

B, such that P1 is impaired in Task A but

spared in Task B while P2 is impaired in Task

B but spared in Task A.

Under these conditions, it must be concluded

that the pattern of impairment ‘‘may be drawn by

two independent functions, F1 and F2 involved in

Tasks A and B’’ (Vallar, 1999).

This methodological tool has been used

extensively in both group and single-case studies

to ‘‘elucidate the multicomponential architecture

of mental functions and their neural basis’’ (Vallar,

1999). However, such proposed dissociations are

often based upon subjective estimates of ‘‘high

performance’’ on one task and ‘‘low perfor-

mance’’ on another, without considering the prob-

ability that such an outcome might have occurred

by chance if patients were drawn randomly from

the general population, or from some reference

population (e.g., large unselected samples of

brain-injured patients at risk for a given class of

disorders). When inferential statistics are applied,

researchers sometimes make unwarranted assump-

tions about independence and the equivalence

of variances and means between the two measures

in question, leading to high risk of false positives

and/or false negatives (Bates, Appelbaum, et al.,

1991; Bates, McDonald, et al., 1991).

In order to determine whether two measures

‘‘come apart’’ in an interesting way in two or

more brain-damaged patients, it is important to

understand how well those measures ‘‘hang

together’’ (i.e., correlate) across the populations

of interest. The goal of this study is to introduce a

statistical procedure to determine the probability

of a double dissociation when the correlation

between measures is taken into account.

We will begin with a discussion of artifacts that

occasionally arise when the logic of double

dissociations is applied. This will include some

problems that have been explored by other

authors, involving measurement and population

variance, and uncontrolled properties of the

‘‘performance/resource curve’’ (Shallice, 1988).

However, our main focus will be on the problem of

measurement intercorrelation, which (to the best

of our knowledge) has not yet received serious

consideration in neuropsychological research, at

least not with reference to the particular issue of

quantifying dissociations. Following this review,

we will provide a series of concrete examples

from large-sample studies of linguistic and

nonlinguistic functions, demonstrating why the

quantification of both single and double dissocia-

tions requires knowledge of the correlation

between each pair of measures. Our goal is not

to criticize prior research for failing to take this

issue into account, but rather to provide neuro-

psychological researchers with analytical tools

that can be used in a variety of ways, depending on

the goals of the investigator, to quantify and

evaluate profiles of association and dissociation in

patients with neurological impairments.

Some Problems in the Quantification

of Behavioral Dissociations

Under what conditions can we conclude that a

true double dissociation has been found, of the

sort that justifies conclusions about the functional

and neural separation of two functions? Figure 1a

illustrates a potential dissociation between two

measures, A and B. In the situation illustrated by

this bar graph, Patient P1 is relatively spared on

Measure A and impaired on Measure B; P2 shows

the opposite profile, with relative sparing on

Measure B and impairment on Measure A. This

pattern seems to meet the requirements outlined

by Bouillaud, Teuber and other proponents of the

logic of double dissociation. In fact, if we regraph

the same data as a line graph (Fig. 1b), the desired

cross-over interaction discussed by many authors

is clearly revealed (e.g., Dunn & Kirsner, 1988).

However, as noted by Shallice (1988), Bates,

Appelbaum, et al. (1991), Bates, McDonald,

et al. (1991), Elman et al. (1996), Vallar (1999)

and others, this apparent cross-over interaction

can be misleading.

The first set of problems concerns the broad

variability that is commonly seen in neuropsy-

chological research. This variability is actually

the confluence of two quite different sources of

variation – both of which can make interpretation
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of cross-over interactions difficult. The first

source of variation is measurement variation,

or in psychometric terminology, measurement

unreliability. The second source of variation is

within-population variation, that is, differences

between individuals that would show up in the

data even if our instruments were perfectly

reliable, that is, without measurement error

variance. We will illustrate both problems with

the same set of figures.

With regard to measurement variation, con-

sider the two individuals, P1 and P2 of Figure 1a

and b. If we repeat the test on the same individuals

‘‘n’’ times we may find very different outcomes.

Figure 1c illustrates the case of a very low

standard error, while Figure 1d a very large one.

Holding the means constant, it is clear that a

meaningful, reliable double dissociation for P1

and P2 can be consistently obtained in the case of

a low standard error, but not for the large one.

Thus knowledge of the reliability of our two

measures and their standard error of measurement

in the population under study are essential factors

in the interpretation of double dissociations.

The second type of variation has to do with

individual differences within the population from

Fig. 1. (a) Hypothetical double dissociation between two tasks, in two individual patients (or two groups), expressed
as a bar graph. (b) Hypothetical double dissociation between two tasks, expressed as a line graph to underscore
cross-over interaction. (c) Line graph of a hypothetical double dissociation between two tasks, with error bars
to indicate high reliability. (d) Line graph of a hypothetical double dissociation between two tasks, with error
bars to indicate low reliability (high variance).
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which our patients are drawn, and is relevant if we

want to generalize from individual patients to

some larger group. For example, P1 may now

refer to a population of individuals with a very

specific lesion site and type, while P2 may

represent a different, equally specific lesion site

and type. We may use the same Figure 1c and d

to represent this situation, but now the error bars

represent the variability in each population.

Inferring a double dissociation for P1 and P2 is

in this case heavily dependent upon the different

degree of variability within the populations.

Thus we can see that the variance around the

mean can be quite large for two kinds of reasons:

because the measures themselves are unreliable,

and/or because there really are large and mean-

ingful differences among individuals within

populations in performance on this task. Large

variances of either type can lead to situations in

which the interpretation of cross-over interactions

is problematic. Finally, it should be noted that low

reliability also leads to a low correlation between

measures, which (as we will demonstrate below)

increases the probability of false positives in our

search for meaningful dissociations.

A different kind of problem in neuropsycho-

logical research involves the relationships

between performance and capacity that underlie

neuropsychological measures, first discussed

in detail by Shallice (1988; see also Bates,

Appelbaum, et al., 1991; Elman et al., 1996;

Vallar, 1999). The key insight here lies in what

Norman and Shallice (1983) call ‘‘performance/

capacity curves.’’ Figure 2 illustrates hypothetical

relationships between performance and some

underlying capacity or resource (e.g., attention,

working memory) in three different tasks (A, B,

and C). Task A is governed by Function 3, a linear

performance/resource relation in which a drop in

capacity leads to a proportional drop in perfor-

mance. Although this kind of relationship is often

assumed in neuropsychological research, it is

actually fairly rare in research on attention and

performance. Task B is governed by Function 1,

a common nonlinear function for well-practiced

tasks in which performance remains near ceiling

until a substantial amount of capacity is lost, and

then drops sharply. For Task C, performance and

capacity follow a more complex S-shaped relation

(Function 2) that is also quite common in the

literature on attention and performance. In this

third case, decrements in capacity up to 30% have

virtually no measurable effect on performance.

Given these three functions, consider the patterns

of sparing and impairment that might obtain for

two hypothetical patients who differ only in the

Fig. 2. Illustrations of capacity/performance functions.
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amount of capacity that they have lost. P1 has lost

25% of this resource (operating at 75% capacity),

P2 has lost 70% of this resource (operating at 30%

capacity). Although these two patients actually

differ only in quantitative terms, the relations in

Figure 2 suggest several qualitative outcomes:

(1) that both patients are spared on Task B, and to

the same degree, and (2) that there is a double

dissociation between Tasks A and C, such that

Patient 1 is better on C than A, while Patient 2 is

better on A than C. In the absence of information

about performance/capacity functions, we might

be tempted to draw misleading conclusions about

the architecture that underlies these profiles.

These are difficult problems that can only be

solved if the investigator has detailed information

about the distribution of performance on the

measures in question in the reference population

from which single cases or groups of patients are

drawn. The choice of reference populations is also

important, because our understanding of the

measurement properties of a clinical instrument

must be based on a population that displays

significant variation. Suppose, for example, that

we were to obtain the means and variances on

Measures A and B from a population of healthy

normal controls who rarely make an error of any

kind. The means for our two measures would

hover near 100%, and the variance would be very

small. Because of these ceiling effects, we would

know next to nothing about the performance/

capacity functions that govern our two measures

when resources are reduced below normal levels,

and as a result we could easily fall prey to the kind

of situation illustrated in Figure 2. A better

strategy might be to identify a large reference

population of unselected patients, or patients who

are at risk for a broad class of behavioral deficits

and dissociations, including the ones tapped by A

and B. This is the situation that we will assume for

the remainder of this paper.

The two problems that we have just described

(i.e., measurement/population variance, and per-

formance/capacity curves) have been known for

some time, although they are not always taken

into account in neuropsychological research. In

this paper, we will focus on a third (related)

problem: the correlation between measures and its

consequences for quantification of behavioral

dissociations. To the best of our knowledge, this

problem has not been explored in any detail

within the field of cognitive neuropsychology,

although we will show that its effects on the

probability of observing a behavioral dissociation

are profound (cf. Bishop, 1997; Tomblin &

Pandich, 1999, for a discussion of measurement

correlation in diagnoses of childhood language

impairments).

The term ‘‘correlation’’ refers to the degree to

which performance on one measure is system-

atically related to performance on another. If two

Measures A and B are perfectly correlated, then

we can always exactly predict scores on one from

scores on the other. When utilizing the Pearson

product moment correlation, which is typical

in neuropsychology, we further assume that the

functional relation of interest is the linear

function, and that the two attributes of interest

are jointly normally distributed (i.e., bivariate

normal). We will follow these standard assump-

tions for the rest of the paper (although other

assumptions are possible, and sufficiently plau-

sible in neuropsychological research that they

would merit exploration).

In the hypothetical situations illustrated

in Figure 1a–d, we assumed (implicitly) that

Measures A and B were independent. However,

the assumption of attribute independence is not

always valid. Among other things, individual

differences in severity of brain injury tend to drive

outcomes in a common direction when patients

undergo a battery of behavioral tests (Caplan &

Hildebrandt, 1988; Schuell & Jenkins, 1959), and

premorbid individual differences in education

and/or intelligence may continue to have an effect

when the same patients have sustained brain

injury.

To illustrate the implications of this point,

consider another hypothetical situation in Figure

3a, which represents the position of two indivi-

duals, Fred and Charlie, on a pair of dimensions X

and Y, whose correlation is unknown. Suppose

that we are State Troopers who have been told that

a criminal is loose in our community, someone

who is ‘‘very unusual.’’ We have only one chance

to make an arrest, and we know that one of these

two individuals is the culprit, but the only

information that we have to distinguish Fred from
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Charlie is the information plotted in Figure 3a.

Which of these two gentlemen is ‘‘unusual’’? If

we assume that the two dimensions X and Y are

statistically independent (i.e., uncorrelated), then

the definition of ‘‘unusual’’ has to lie in the

distance of each score from the mean. Fred lies

reasonably close to the mean on each dimension,

while Charlie seems to be characterized by a pair

of extreme scores. We would thus conclude that

Charlie is the most likely suspect, and let Fred go.

Suppose, however, that the two dimensions X

and Y are highly correlated (r ¼ þ.90), illustrated

by the correlation ellipsoid in Figure 3b. This

correlation ellipsoid represents the 95% confi-

dence region, that is, contains 95% of the

population (the ‘‘typical cases’’) and excludes

5% of the population (i.e., the ‘‘unusual cases’’).

As we shall see below, correlation ellipsoids can

vary in size and shape (though not in symmetry),

depending on the confidence intervals that we

assume (i.e., whether we define ‘‘unusual’’ in

terms of the outer 5%, 10%, 30%, etc.) and on the

magnitude of the correlation that holds between

our measures. Under the high correlation assump-

tion, it is Fred who lies outside of the 95%

correlation ellipsoid (in the ‘‘unusual’’ 5%), while

Charlie falls inside the ellipsoid (within the 95%

confidence ellipsoid that we have selected to

define a ‘‘typical’’ relationship between mea-

sures). Hence Charlie represents a more typical

case than Fred, despite his more extreme scores.

The point of this particular illustration is the

following: Dissociations are meaningful and

interesting because they represent unusual rela-

tionships between two measures, that is, relation-

ships that cry out for some kind of an explanation.

In neuropsychological research, it is traditionally

assumed that these unusual relationships are

Fig. 3. Why correlation matters: An illustration.
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caused by a disruption in one or more neural

mechanisms that normally operate in concert with

the rest of the mind/brain, but have been separated

(or ‘‘subtracted away’’) by injury. Hence one of

the factors that must be taken into account in the

quantification of dissociations is the correlation

that would normally hold in the absence of this

particular injury. The probability that we will

observe an ‘‘unusual’’ dissociation between two

measures is thus, in part, a function of the

correlation between those measures in the refer-

ence population from which a candidate has been

drawn. Extreme scores are a useful index of

pathology, but they can be misleading in the

absence of information about measurement

correlation.

For the remainder of the paper, we will

illustrate this point by presenting information

from two large samples of patients from a single

neurorehabilitative hospital in Rome. The first

sample was drawn from a larger group of 204

patients who were administered a battery of

language tests because they were believed to be

at risk for aphasia, due in the vast majority of cases

to acquired left-hemisphere injury. Note that

the patients who received this particular battery

(Ciurli, Marangolo, & Basso, 1996) represent a

broad range of severity. The second sample was

drawn from a separate group of 146 patients who

received a battery of tests designed to detect

various forms of neglect; these patients were all

believed to be at risk for neglect, due in most cases

to an acquired right-hemisphere lesion. Because

patients were tested on the basis of specific

neurological risk factors (especially side of

lesion), these are not ‘‘unselected samples,’’ and

hence they do not represent the general population

nor the population of all patients with neurological

impairments. However, they do represent (in each

case) an otherwise unselected population of

patients who are at risk for a class of behavioral

disorders (aphasia or neglect) in a given clinic,

across a 3-year period. Most important for our

purposes here, each group represents a population

in which we might expect to find deviations

in more than one direction, and hence double

dissociations (among language measures in the

left-hemisphere sample; among neglect measures

in the right-hemisphere sample).

Within each sample (one at risk for language

deficits, the other at risk for neglect), we chose

two pairs of measures: one pair with a moderate

to high correlation in that reference group, and

another pair for which the correlation is relatively

low (though significantly above zero). These four

pairs of measures will be used to illustrate the

number of dissociations that we would predict

under different quantitative definitions if mea-

sures were uncorrelated, and compare those

predictions with the number that are actually

observed in each data set, with and without taking

the correlation between measures into account.

METHOD

Participants
Sample 1 was drawn from 204 patients who were tested
for suspected language deficits. Patients had a mean age
of 69.3 years (range 15–87 years), and were tested at a
mean interval of 13 months post-onset (range 3–180
months). There were 111 males and 93 females,
representing a broad range of social class and
educational levels (a mean of 8 years of school
attendance, with a range from 0 to 18 years). In most
cases (93%), patients had unilateral damage to the
left hemisphere. Ninety-eight percentage were due to
cerebrovascular accidents, 2% were due to tumors.

Although the same battery of language tests was
administered to all patients, occasionally a particular
subscale was skipped, or the patient received a score of
zero when he or she proved to be completely untestable
on that particular measure. For the exercises illustrated
below, we decided to exclude all cases with zero scores
that reflect untestability on either measure, because
such cases cluster into a ‘‘basement’’ of floor effects
that distort the bivariate normal distribution. We note,
however, that we did attempt a replication of all the
analyses presented below with and without these
untestable cases. Patterns were quite similar in both
sets of analyses (testimony to their robust nature in the
face of deviations from bivariate normal). For the sake
of economy, we will restrict our report to the smaller
subsamples that result when these cases are excluded
(yielding a total of 157 cases for the noun/verb naming
comparison, 130 cases for the sentence repetition/
comprehension comparison, both defined below).

Sample 2 includes 146 patients who were tested for
suspected hemispatial neglect. Patients had a mean age
of 67.3 years (range 23–91 years), and were tested at a
mean post-onset interval of 4.5 months (range 1–32
months). There were 84 males and 62 females, with a
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mean of 7.7 years of school attendance (range 3–18
years). Of these patients 96% had unilateral damage to
the right-hemisphere; 99% of the cases were due to
cerebrovascular accidents, 1% to other causes. The
problems of missing data and/or untestable zero scores
did not arise for this sample (except for the loss of
a single case in the Wundt-Jastrow/personal-neglect
comparison described below, yielding a total sample of
145).

Measures
Patients with suspected aphasia were given a battery of
tests developed by Anna Basso and colleagues (Ciurli
et al., 1996), similar in length and structure to standard
aphasia batteries in English including the Boston
Diagnostic Aphasia Examination (Goodglass &
Kaplan, 1983) and the Western Aphasia Battery
(Kertesz, 1982). For the analyses presented below, all
scores were converted into z scores, so that the mean for
each variable is set at zero and individual scores are
expressed in standard deviations from the mean.

From the data for the complete aphasia battery, we
computed pairwise correlations among the following
measures: a 5-point fluency rating scale based on speech
samples and performance throughout testing (0 ¼ mute
or unintelligible; 1 ¼ primarily single-word speech;
2 ¼ severely telegraphic speech, some connected dis-
course but large amounts of omission; 3 ¼ mildly
telegraphic speech with relatively few errors and
omissions; 4 ¼ normal fluency and melodic line), two
subscores for naming (naming objects, 20 items;
naming actions, 10 items), three repetition subtests
(repeat words, 20 items; repeat nonwords, 20 items;
repeat phrases and sentences, 10 items), one test of word
comprehension (20 items), and two tests of sentence
comprehension (the Token Test by De Renzi & Vignolo,
1962, with 36 items) and a separate sentence compre-
hension scale that was part of the Ciurli et al. battery,
with 10 items. Two pairs of measures were chosen for
the dissociation analyses presented below: one pair with
an exceptionally high correlation (naming objects vs.
naming actions, r ¼ þ.84, N ¼ 157, p< .01), and
another pair with one of the lowest correlations in the
battery (repeat sentences vs. comprehend sentences,
r ¼ þ.35, N ¼ 130, p< .01).

Patients whowere at risk for hemispatial neglect were
given a battery of measures including a line cancellation
test (Albert, 1973, 21 items), a letter cancellation test
(Diller & Weinberg, 1977, 104 items), a test based on the
Wundt-Jastrow perceptual illusion (Massironi, Anto-
nucci, Pizzamiglio, Vitale, & Zoccolotti, 1988, 40
items), and a test of personal neglect (Zoccolotti &
Judica, 1991, six items). Responses to the left and right
side were scored separately for each test except the last
one. Two measures were chosen for the analyses

presented below: a pair with a moderately high
correlation (Wundt-Jastrow left-side and line cancella-
tion left side, r ¼ �.60, N ¼ 146, p< .01) and a pair
with a relatively low correlation (Wundt-Jastrow left
side and personal neglect, r ¼ .21, N ¼ 145, p< .05).

RESULTS

Theoretical Distributions

We begin this exercise by establishing a series

of quantitative definitions of ‘‘dissociation,’’ and

calculating the number of dissociations that we

would expect by chance between two normally

distributed measures with a zero correlation. Each

of these quantitative definitions was chosen

because it reflects standards that are often applied

(implicitly or explicitly) in the literature on single

and double dissociations.

1. Quadrants. In this case, dissociations are

defined in terms of quadrants (see Fig. 4a) in

a two-dimensional space, with the cross-point

representing the means for both measures.

Assuming two uncorrelated, normally distrib-

uted measures and no ties, we would expect

25% of the sample to fall in the dissociated

High X/Low Y quadrant (lower right), and

another 25% would fall in the dissociated

Low X/High Y quadrant (upper left). The

remaining 50% of the sample would be defined

as ‘‘undissociated,’’ including 25% in High X/

High Y quadrant (upper right) and another 25%

in Low X/Low Y quadrant (lower left). This

criterion quantifies an informal definition of

‘‘double dissociation’’ that is often applied in

single-case studies.

2. Strong dissociation. This is a much more

stringent criterion, under which a patient is

defined as ‘‘strongly dissociated’’ only if he

or she falls one standard deviation above the

mean on one measure and one standard devia-

tion below the mean on the other. This kind of

relationship is also illustrated in Figure 4b,

which contains a ‘‘box’’ defined by one stan-

dard deviation above and below the means for

each measure. Under this most rigorous defini-

tion, we would expect only 3% of the popula-

tion to fall within the space of High X/Low Y

(extreme lower right box) and another 3% in
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the space of Low X/High Y (extreme upper left

box), if the measures are uncorrelated. The

remaining 94% of the population would not

qualify as ‘‘truly dissociated.’’ Hence this

criterion approximates a conventional two-

tailed test in which 5% of the population

falls in the ‘‘statistically significant’’ range

(2.5% in each tail of the distribution).

3. Weak dissociation. This is a somewhat more

lenient definition that still takes the standard

deviation into account. However, in this case

we would only require the patient to fall one

standard deviation below the mean on a single

dimension, as long as the patient also fell

within one of the High/Low or Low/High

quartiles defined in (1) above. This kind of

relationship is illustrated in Figure 4c. Under

this less stringent definition, we would expect

12.8% of the population to fall in the High X/

Low Y space and another 12.8% to fall in the

Low X/High Y space, assuming, again, uncor-

related measures. This criterion is close to the

definitions that are often used in the literature

on language and learning disabilities. For

example, Specific Language Impairment is

typically defined in terms of a standardized

Fig. 4. (a) Dissociations defined in terms of quadrants. (b) Dissociations defined as ‘‘Strong Dissociations.’’
Quadrants labelled as ‘‘A’’ and ‘‘B’’ contain dissociated cases by this definition. (c) Dissociations defined as
‘‘Weak Dissociations.’’ Cases in areas labelled as ‘‘A’’, ‘‘B’’, ‘‘C’’ and ‘‘D’’ are dissociated by this
definition.
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language score that is one or more standard

deviations below the mean in an individual

whose performance on a nonverbal intelli-

gence test falls within the normal range (oper-

ationalized as scores above 70, 75 or 80,

depending on the study – Bishop, 1997;

Leonard, 1998).

All of these theoretical distributions are based

on the assumption that our measures are uncorre-

lated and follow the bivariate normal distribution

(with the same means and variances). As we shall

see below, the difference between predicted and

observed outcomes increases proportionally as

the size of the correlation goes up, in a direction

that makes it increasingly difficult to detect a

dissociation of any kind unless the correlation is

taken into account.

Observed Distributions

Using the definitions provided above, let us now

examine how many dissociations are detected in

these data sets if we fail to take the correlation

between measures into account. We will illustrate

the first pair of measures (noun/verb dissocia-

tions) in some detail, and then summarize results

for the other three pairs of measures in a more

succinct form, referring the reader to the relevant

tables for numerical details.

Noun/Verb Dissociations

We begin with the relationship between object

(noun) naming and action (verb) naming, which

are correlated þ.84. This pair of measures is a

reasonable place to start, because the potential

dissociation between object and action naming

has sparked considerable interest in the aphasia

literature (for reviews, see Bates, Chen, Tzeng, Li,

& Opie, 1991; Bates, Wulfeck, & MacWhinney,

1991; Berndt & Zingeser, 1991; Cappa &

Ullman, 1998; Caramazza & Hillis, 1991; Chen

& Bates, 1998; Damasio, Grabowski, Tranel,

Hichwa, & Damasio, 1996; Goodglass, 1993;

Zingeser & Berndt, 1990). Double dissociations

between object and action naming have been

reported in different languages including English,

Italian, and Chinese. When such dissociations are

described, the Noun>Verb pattern is typically

reported for nonfluent Broca’s aphasics, while

the opposite profile (Verbs>Nouns) is more

common among fluent aphasics (anomics and/or

Wernicke’s). Such associations between form

class and aphasia type have led to speculation

that the mediation of noun versus verb processing

may involve different regions of the cortex.

Hence the search for noun-verb dissociations is

well motivated.

The first three rows of Table 1 summarize the

number and percent of dissociations that are

actually observed under each of the definitions

provided above, compared with the number that

we would predict if the measures were truly

independent. (Rows 4–9 of Tables 1–4 provide the

same kind of information for analyses that will be

detailed below.) Clearly, there is a substantial

difference between predicted and observed values

under most definitions of ‘‘dissociation.’’

Using a simple definition in terms of High/Low

and Low/High quadrants, we would expect about

79 cases (50% of 157) to fall into one or the other

of the ‘‘interesting’’ quadrants if Noun and Verb

naming were independent (39.3 or 25% in

Noun>Verb; 39.3 or 25% in Verb>Noun).

Instead, we find only 20 dissociations overall,

including 12 cases (7.6%) in the Noun>Verb

quadrant, and eight cases (5.1%) in the

Verb>Noun quadrant (see Table 1). Hence the

number of observed dissociations is about one-

fourth the number that we would expect to find if

the two measures were uncorrelated.

Applying our most stringent definition

(requiring one standard deviation above and one

below on each measure), we would expect to

find between 9 and 10 cases (6% of 157)

within one of the two ‘‘interesting’’ portions of

the noun-verb space. Instead, we find absolutely

no cases that meet the stringent criterion: 100%

of our 157 patients fall into the ‘‘uninteresting’’

range.

Finally, loosening this definition to a weaker

criterion requiring one standard deviation in a

single direction within a High/Low quadrant, we

would expect approximately 40 dissociative cases

in the sample (12.8% in each direction). Instead,

we find only three cases of Noun>Verb (1.9%)

and two cases of Verb>Noun (1.2%) – see

Table 1. In other words, we find one-eighth the

number of dissociations that we would expect on
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Table 1. Percent Theoretical Versus Percent Observed Incidence of Dissociations for Noun (Object) Versus Verb (Action) Naming (Number of Cases in Parentheses).

Classification scheme Noun>Verb Verb>Noun No dissociation

Predicted (%) Observed (%) Predicted (%) Observed (%) Predicted (%) Observed (%)

1. Quadrants (High/Low)
157 cases 25 (39.3) 7.6 (12) 25 (39.3) 5.1 (8) 50 (78.5) 87.3 (137)

2. Strong dissociation (þ1 SD/�1 SD)
157 cases 3 (4.7) 0 (0) 3 (4.7) 0 (0) 94 (147.6) 100 (157)

3. Weak dissociation (High/Low)
(�1 SD in one direction)
157 cases 12.8 (20.1) 1.9 (3) 12.8 (20) 1.2 (2) 74.4 (116.8) 96.8 (152)

4. 90% correlation ellipsoid
157 cases 5 (7.9) 1.9 (3) 5 (7.9) 4.5 (7) 90 (141.3) 93.6 (147)

5. 90% correlation ellipsoid (High/Low only)
157 cases 2.5 (3.9) 1.9 (3) 2.5 (3.9) 2.5 (4) 95 (149.2) 95.5 (150)

6. 70% correlation ellipsoid
157 cases 15 (23.6) 8.3 (13) 15 (23.5) 10.8 (17) 70 (109.9) 80.9 (127)

7. 70% correlation ellipsoid (High/Low only)
157 cases 7.5 (11.8) 3.2 (5) 7.5 (11.8) 3.2 (5) 85 (133.5) 93.6 (147)

8. 50% correlation ellipsoid
157 cases 25 (39.3) 22.3 (35) 25 (39.3) 31.8 (50) 50 (78.5) 45.9 (72)

9. 50% correlation ellipsoid (High/Low only)
157 cases 12.5 (19.6) 5.1 (8) 12.5 (19.6) 3.8 (6) 75 (117.8) 91.1 (143)
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Table 2. Percent Theoretical Versus Percent Observed Incidence of Dissociations for Sentence Comprehension Versus Sentence Repetition (Number of Cases in
Parentheses).

Classification scheme Comprehension > Repetition Repetition > Comprehension No dissociation

Predicted (%) Observed (%) Predicted (%) Observed (%) Predicted (%) Observed (%)

1. Quadrants (High/Low)
130 cases 25 (32.5) 23.8 (31) 25 (32.5) 11.5 (15) 50 (65) 64.6 (84)

2. Strong dissociation (þ1 SD/�1 SD)
130 cases 3 (3.9) 1.5 (2) 3 (3.9) 0.8 (1) 94 (122.2) 97.7 (127)

3. Weak dissociation (High/Low)
(�1 SD in one direction)
130 cases 12.8 (16.6) 16.2 (21) 12.8 (16.6) 7.7 (10) 74.4 (96.7) 76.2 (99)

4. 90% correlation ellipsoid
130 cases 5 (6.5) 0 (0) 5 (6.5) 5.4 (7) 90 (117) 94.6 (123)

5. 90% correlation ellipsoid (High/Low only)
130 cases 2.5 (3.3) 0 (0) 2.5 (3.3) 1.5 (2) 95 (123.5) 98.5 (128)

6. 70% correlation ellipsoid
130 cases 15 (19.5) 6.9 (9) 15 (19.5) 16.2 (21) 70 (91) 76.9 (100)

7. 70% correlation ellipsoid (High/Low only)
130 cases 7.5 (9.8) 6.9 (9) 7.5 (9.8) 6.9 (9) 85 (110.5) 86.2 (112)

8. 50% correlation ellipsoid
130 cases 25 (32.5) 26.9 (35) 25 (32.5) 32.3 (42) 50 (65) 40.8 (53)

9. 50% correlation ellipsoid (High/Low only)
130 cases 12.5 (16.3) 16.2 (21) 12.5 (16.3) 8.5 (11) 75 (97.5) 75.4 (98)
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Table 3. Percent Theoretical Versus Percent Observed Incidence of Dissociations for Wundt-Jarow Illusion Versus Line Bisection (Number of Cases in Parentheses).

Classification scheme Wundt-Jarow>Line bisection Line bisection>Wundt-Jarow No dissociation

Predicted (%) Observed (%) Predicted (%) Observed (%) Predicted (%) Observed (%)

1. Quadrants (High/Low)
146 cases 25 (36.5) 12.3 (18) 25 (36.5) 14.4 (21) 50 (73) 73.3 (107)

2. Strong dissociation (þ1 SD/�1 SD)
146 cases 3 1.4 3 0 94 98.6

3. Weak dissociation (High/Low)
(�1 SD in one direction)

146 cases 12.8 (18.7) 8.2 (12) 12.8 (18.7) 3.4 (5) 74.4 (108.6) 88.4 (129)
4. 90% correlation ellipsoid

146 cases 5 (7.3) 6.2 (9) 5 (7.3) 0.7 (1) 90 (131.4) 93.2 (136)
5. 90% correlation ellipsoid (High/Low only)

146 cases 2.5 (3.7) 6.2 (9) 2.5 (3.7) 0.7 (1) 95 (138.7) 93.2 (136)
6. 70% correlation ellipsoid

146 cases 15 (21.9) 21.9 (32) 15 (21.9) 5.5 (8) 70 (102.2) 72.6 (106)
7. 70% correlation ellipsoid (High/Low only)

146 cases 7.5 (11) 8.9 (13) 7.5 (11) 5.5 (8) 85 (124) 85.6 (125)
8. 50% correlation ellipsoid

146 cases 25 (36.5) 38.4 (56) 25 (36.5) 30.1 (44) 50 (73) 31.5 (46)
9. 50% correlation ellipsoid (High/Low only)

146 cases 12.5 (18.3) 8.9 (13) 12.5 (18.3) 11.6 (17) 75 (109.5) 79.5 (116)
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Table 4. Percent Theoretical Versus Percent Observed Incidence of Dissociations for Wundt-Jarow Illusion Versus Personal Neglect (Number of Cases in
Parentheses).

Classification scheme Wundt-Jarow> Personal Neglect Personal Neglect>Wundt-Jarow No dissociation

Predicted (%) Observed (%) Predicted (%) Observed (%) Predicted (%) Observed (%)

1. Quadrants (High/Low)
145 cases 25 (36.3) 24.1 (35) 25 (36.3) 18.6 (27) 50 (72.5) 57.2 (83)

2. Strong dissociation (þ1 SD/�1 SD)
145 cases 3 (4.4) 0 (0) 3 (4.4) 4.1 (6) 94 (136.3) 95.9 (139)

3. Weak dissociation (High/Low)
(�1 SD in one direction)
145 cases 12.8 (18.6) 11.7 (17) 12.8 (18.6) 14.5 (21) 74.4 (107.9) 73.8 (107)

4. 90% correlation ellipsoid
145 cases 5 (7.3) 0 (0) 5 (7.3) 7.6 (11) 90 (130.5) 92.4 (134)

5. 90% correlation ellipsoid (High/Low only)
145 cases 2.5 (3.6) 0 (0) 2.5 (3.6) 2.1 (3) 95 (137.8) 97.9 (142)

6. 70% correlation ellipsoid
145 cases 15 (21.8) 15.2 (22) 15 (21.8) 12.4 (18) 70 (101.5) 72.4 (105)

7. 70% correlation ellipsoid (High/Low only)
145 cases 7.5 (10.9) 9.7 (14) 7.5 (10.9) 6.9 (10) 85 (116) 83.4 (121)

8. 50% correlation ellipsoid
145 cases 25 (36.3) 19.3 (28) 25 (36.3) 40.7 (59) 50 (72.5) 40 (58)

9. 50% correlation ellipsoid (High/Low only)
145 cases 12.5 (18.1) 12.4 (18) 12.5 (18.1) 13.8 (20) 75 (108.8) 73.8 (107)
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this criterion if object and action naming were

independent.

Why do we find so few dissociations in this

example under any definition? Because of the

very high positive correlation between object and

action naming, the data are concentrated along the

diagonal connecting High-High and Low-Low.

This makes it very difficult to find dissociations

between the two measures under any definition,

because there are so few cases of any kind in the

High-Low and Low-High quadrants.

Dissociations Between Sentence

Comprehension and Sentence Repetition

What would happen for two variables with a

weaker correlation? Within the language battery,

we selected Sentence Comprehension (C) and

Sentence Repetition (R) for this purpose. Across

the 130 patients, the correlation was a positive but

relatively low þ.35. This is one of the lowest

correlations among all of our aphasia subscales,

replicating a partial dissociation that has been

known for more than 100 years. Table 2 presents

the number of dissociations that we observe under

each definition, compared with the number that

we would expect by chance if the variables were

independent. We refer the reader to Table 2 for

details, and summarize briefly the disparities seen

between observed and predicted outcomes with a

relatively weak correlation.

Using the quadrants, we would expect 25% of

our cases to fall in C>R and another 25% in

R>C if the two measures were bivariate normal

and uncorrelated. Observed results are close to

these expectations for C>R (23.8%), but fall

well short for R>C (11.5%, less than half of

the number expected). The asymmetry between

C>R and R>C under both these definitions

means that the two measures do not strictly adhere

to the bivariate normal distribution, even though

all scores were transformed into z scores to equate

means and variances (we will return to this point

in the discussion).

Applying the most stringent definition of

dissociation, we would expect to find 3% of the

population in each of the two extreme regions

(6% total, representing 8–9 cases). Instead, we

find only three dissociated cases (two in C>R;

one in R>C), less than half the number that we

would expect by chance if these measures were

independent.

Finally, under the weaker definition that

requires a standard deviation in only one direc-

tion, we would expect to find approximately

33–34 dissociations out of the sample of 130

patients (12.8% in each of the two dissociated

quadrants). This time there are fewer discrepan-

cies between predictions and observations: We do

find 31 dissociations under this definition (close to

the predicted 33–34), although they are asymme-

trically distributed, with 16.2% in the C>R

group (more than the 12.8% predicted) and 7.7%

in the R>C group (a bit more than half the 12.8%

predicted). In other words, the weaker definition

applied to a data set with a þ.35 correlation

approximates the values that we would obtain if

the measures were independent. Again, however,

there is an asymmetry in the data (more cases of

C>R than R>C) indicating a deviation from the

assumed bivariate normal distribution.

To summarize, the difference between pre-

dicted and observed values is not as dramatic with

a correlation of þ.35 (for sentence comprehen-

sion vs. repetition) as it was with a correlation of

þ.84 (the action/object-naming example above).

Hence the size of the correlation does matter, and,

as it decreases, the data begin to approximate the

assumption of measurement independence that

is often made implicitly in neuropsychological

research. Nevertheless, depending on what defini-

tion of dissociation we choose, we tend to find

fewer cases than we would expect if the measures

were truly independent, and the observed data

reflect asymmetries (i.e., deviations from bivari-

ate normal) that would not be predicted on

mathematical grounds.

Dissociations in Neglect: Wundt-Jastrow

Illusion Versus Line Cancellation

We turn now to the sample of patients at risk for

hemispatial neglect, and begin with two variables

that have a moderate correlation (r ¼ þ.60, one of

the highest correlations in the neglect battery),

between the Wundt-Jastrow illusion test (WJ) and

the line cancellation (LC) task. Although the two

tasks are both used to detect hemispatial neglect,

their cognitive requirements are quite separable.

The line cancellation task requires the patients to
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sequentially explore the different segments dis-

played on each stimulus page, while the Wundt-

Jastrow test can be solved by examining the

stimulus as a whole. Different tasks to evaluate

hemispatial neglect have been shown previously

to agglomerate into partially separable clusters

(Pizzamiglio et al., 1992). For this reason, the two

tasks are expected to show a moderate degree of

dissociation, but this dissociation is of limited

theoretical importance in the study of neglect. For

precisely that reason, it is interesting to ask how

many dissociations we will find under our various

definitions of ‘‘unusual,’’ comparing this case

with the two previous examples in which disso-

ciations were well motivated, and expected. Table

3 compares the predicted and observed scores

under each definition of ‘‘dissociation’’ for these

two tasks.

When dissociations are defined in terms of

quadrants, we see a greater disparity between

observed and predicted outcomes. We find only

12.3% in the WJ>LC quadrant and 14.4% in the

LC>WJ quadrant, roughly half of the expected

number.

Using the most stringent definition (þ1 SD in

one direction, �1 SD in the other), we would

expect 6% of all cases to fall in one or the other of

the two extreme regions (a total of 8 dissociations,

4 per region). Instead we only find only 1.4% (2

cases) that meet this extreme definition, both of

them in the WJ>LC region.

Finally, using the weaker definition (a standard

deviation below the mean in only one direction),

we would expect 12.8% of cases to fall in each

dissociative region if the two measures of neglect

were completely independent. The observed

numbers are smaller: 8.2% in the WJ>LC region

and 3.4% in the LC>WJ region.

To summarize results for this pair of measures,

there is clearly a difference between the number

of outcomes we observe and the number that we

would predict if the two measures were complete-

ly independent, showing again that the correlation

between measures has a strong influence on the

number of dissociations that are observed.

A comparison of this exercise with our findings

above for noun versus verb naming yields some

additional insights. The Wundt-Jastrow and line

cancellation tasks are correlated at þ.60, but were

selected to measure the same deficit. The noun-

and verb-naming tasks are correlated at þ.84, but

were selected to measure forms of naming that are

supposed to dissociate in a substantial number of

patients. And yet we have found more dissocia-

tions in the former case (where they are of little

interest) than the latter case (where they are

expected), underscoring the importance of taking

the correlation between measures into account.

Dissociations in Neglect: Wundt-Jastrow

Versus Personal Neglect
In contrast with the above exercise involving two

moderately correlated measures of extrapersonal

neglect, there are sound theoretical reasons to

expect occasional dissociations between extraper-

sonal and personal neglect (Galati et al., 2000;

Guariglia & Antonucci, 1992; Pizzamiglio et al.,

1992). It has been argued that personal neglect

involves body-centered representations of space

while extrapersonal neglect involves other forms

of spatial coding (e.g., object centered or environ-

ment centered), and that these representations of

space are mediated by different regions of cortex

and display a different degree of lateralization

(Galati et al., 2000). As expected, the Wundt-

Jastrow Illusion (WJ) and the personal neglect

measure (PN) are correlated at only þ.21, one of

the lowest correlations in the neglect battery (con-

stituting a replication of Pizzamiglio et al., 1992).

Table 4 compares observed and predicted results

for these two measures under each definition.

When dissociations are evaluated in terms of

quadrants, observed results in the WJ> PN region

were close to the predicted 25% (at 24.1%), but

results in the opposite PN>WJ region fell short

(at 18.6%). Again, this kind of asymmetry cannot

reflect task difficulty per se when z score trans-

forms are used, and must therefore reflect

deviations from the bivariate normal distribution.

Applying the most stringent definition of

dissociation, we would expect 3% each within

the respective WJ> PN and PN>WJ regions

(6% of all cases). Instead, we found no cases at all

in WJ> PN, and only 4.1% in PN>WJ. Hence,

even with a correlation as low as þ.21, we still

find fewer cases than we would expect when

measurement independence is assumed. We

also find an asymmetry between WJ> PN and
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PN>WJ that may be meaningful (reflecting facts

about the neural substrates for extrapersonal vs.

personal neglect), although it may also reflect

deviations from bivariate normal due to sampling

error.

Finally, using the looser definition, the num-

bers that we observe are a fairly close match to the

expected 12.8%: 11.7% of all cases in WJ> PN

and 14.4% in PN>WJ.

From these exercises, it should be evident that

the correlation between measures matters a great

deal when we set out to find dissociations between

clinical measures, including widely used and

well-motivated measures of aphasia and neglect.

In the final section, we will describe a statistical

technique that takes the correlation between

measures into account, with dissociations defined

in terms of the region outside a specified cor-

relation ellipsoid.

Taking the Correlation into Account

For the same four pairs of measures described

above, we take the correlation between measures

into account by constructing three different cor-

relation ellipsoids, containing 90%, 70% and 50%

of the population, respectively. As in the Fred and

Charlie example described in the introduction, we

use these criteria to decide who is ‘‘unusual’’

(defined as cases that fall outside of the ellipsoid)

and who is ‘‘typical’’ (defined as cases that fall

inside the ellipsoid). The size of the ellipsoid

itself is an arbitrary decision, and depends on

the investigator’s goals. We chose these three

percentages to illustrate a range of options that

are often applied (implicitly or explicitly) in the

neuropsychological literature, roughly analogous

to the three definitions of dissociation applied in

the previous section (where measurement inde-

pendence was assumed).

In all the illustrations that follow, we assume

that our measures follow the bivariate normal

distribution (although, as we have already seen,

deviations from bivariate normal are detectable

in these data). Applying the 90% ellipsoid, a

‘‘dissociation’’ is defined as a case that falls

somewhere in the ‘‘outer space’’ occupied by

10% of the population. Assuming a bivariate

normal distribution, 5% should lie in the X > Y

region (on one side of the diagonal) while the

other 5% should lie in the Y > X region (on the

other side of the diagonal). Hence this is roughly

similar to the most stringent criterion adopted in

the previous section (which predicted 3% in each

dissociative zone). Similarly, applying the 70%

ellipsoid, a dissociation is defined as a case that

falls in the ‘‘outer space’’ occupied by 30% of the

population, 15% on each side of the diagonal.

Hence this criterion approximates the weaker

definition of dissociation in which patients

must fall at least one standard deviation below

the mean on a single measure (predicting 12.8%

in each dissociative zone). Finally, applying the

50% ellipsoid, we liberally define ‘‘unusual’’ to

include half of the population, 25% on each

side of the diagonal, roughly analogous to the

quadrant approach illustrated in the previous

section. A more detailed description of these

computations for a multivariate normal of any

dimensionality can be found in Appelbaum

(2000).

These three correlation ellipsoids are illus-

trated in Figure 5a–c for two hypothetical

variables with correlation of þ.50, under each

of our three definitions of a dissociation. Notice

that these definitions of ‘‘dissociation’’ include

cases that fall in the familiar High/Low and Low/

High quadrants that we have used throughout the

paper. However, the correlation-based definitions

would also include cases in the High/High and

Low/Low quadrants – the kinds of cases that are

rarely taken into consideration in neuropsycholog-

ical research. For example, the correlation-based

method would classify an individual as a

dissociated case, where Y is abnormally low for

that patient’s value of X, even though this

individual is performing close to the group mean

on both measures. This corresponds closely to the

Fred example that we used in the introduction, an

individual who looks relatively normal in terms

of their scores, but looks abnormal when the

correlation is taken into account (see Fig. 3). We

would like to suggest that neuropsychological

researchers may want to give such cases a careful

look, broadening their definition of ‘‘dissocia-

tion’’ to consider these individuals.

On the other hand, we also recognize that

many clinical researchers use the term ‘‘dissocia-

tion’’ only for cases that are truly deficient along
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at least one dimension. Under this restriction, the

term should not be applied to relatively unim-

paired cases in the High/High quadrant, and

probably would not be applied to globally

impaired patients in the Low/Low quadrant. If a

clinical researcher holds to this restriction but also

wants to take the correlation into account, then the

term ‘‘dissociation’’ would be applied only to

cases that (a) fall outside the specific correlation

ellipsoid, but also (b) fall within one of the usual

High/Low or Low/High quadrants. Below, we will

provide results with and without this restriction,

for the respective 90%, 70% and 50% correlation

ellipsoids.

Figures 6–9 present scatterplots for the four

pairs of variables that we have just reviewed, with

the respective 50%, 70% and 90% ellipsoids

imposed. Numerical details for all of these

exercises are provided in Tables 1–4, to facilitate

comparison between methods that do and do not

take measure correlation into account. Without

repeating all the numbers listed in those tables, we

can summarize results briefly in support of three

conclusions: (1) the discrepancy between meth-

ods is most evident for measures that are highly

correlated; as the correlation drops, techniques

that take the correlation into account start to yield

outcomes numerically similar to those that are

Fig. 5 (a) 90%, 70%, and 50% ellipsoids superimposed upon the quadrant definition of dissociations. (b) 90%,
70%, and 50% ellipsoids superimposed upon the ‘‘Strong’’ definition of dissociations. (c) 90%, 70%, and
50% ellipsoids superimposed upon the ‘‘Weak’’ definition of dissociations.
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obtained assuming measurement independence,

(2) there are also qualitative differences between

methods in the identity of those individuals who

meet each definition, (3) the observed data

frequently deviate from the standard assumptions

of normality, including the bivariate normal

assumption that underlies the correlation-based

methods illustrated here, so that we may want to

consider some additional techniques that do not

rely on assumptions of bivariate normal.

Size of the Correlation

The disparity between methods is most evident

for measures that are highly correlated (Tables 1

Fig. 6. Empirical distribution of object naming by
action naming with regions of dissociation.
Scores in standardized units. More than one
case may be represented by a single point.

Fig. 7. Empirical distribution of sentence comprehen-
sion by sentence repetition with regions of
dissociation. Scores in standardized units. More
than one case may be represented by a single
point.

Fig. 8. Empirical distribution of Wundt-Jastrow left
side and line cancellation left side with regions
of cancellation. Scores in standardized units.
More than one case may be represented by a
single point.

Fig. 9. Empirical distribution of Wundt-Jastrow left-
side and personal neglect with regions of
dissociation. Scores in standardized units.
More than one case may be represented by a
single point.
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and 3). This is particularly evident in the case of

noun-verb naming (which had the highest mea-

surement correlation among our four examples, at

þ.84). Here there were gross disparities between

predicted and observed values when we failed to

take the correlation into account, under all three

definitions. As a result, dissociations between

noun and verb naming proved very hard to find.

With the various correlation-based criteria, pre-

dicted and observed values were much closer,

which means in turn that dissociations were

much easier to detect. For example, the quadrant

method and the 50% ellipsoid are similar in their

predictions: 25% of all cases should fall in the

Noun>Verb space and another 25% in the

Verb>Noun space. Under the quadrant method

(assuming measurement independence), we only

found 7.6% in Noun>Verb and 5.1% in

Verb>Noun, a gross disparity. However, when

dissociations are defined by the 50% ellipsoid,

22.3% of all cases fell in the Noun > Verb

region and 31.9% fell in the Verb>Noun region.

In other words, we find roughly four times more

dissociations when the correlation is taken into

account, closer to the values that we would expect

by the criterion that we chose.

By contrast, the disparity between methods is

much smaller for measures with a low correlation.

For example, in the case of personal neglect

versus the Wundt-Jastrow measure of extraper-

sonal neglect (which had the lowest correlation

among our four pairs of measures, at only þ.21),

the number of dissociations that we can detect

are roughly similar whether or not we take the

correlation into account, under virtually any

definition. For example, the 70% correlation-

based criterion predicts that 15% of the popula-

tion will fall in the WJ> PN zone and another

15% will fall in the PN>WJ zone. The observed

numbers were fairly close: 15.2% and 12.4%,

respectively. However, this result (taking the

correlation into account) is similar to the numbers

observed assuming measurement independence,

under the weak criterion in which patients

must fall one or more standard deviations

below the mean in a single dimension. On this

weak criterion, we would expect 12.8% of the

population to fall in the WJ> PN region, and

another 12.8% in the PN>WJ region. The

observed numbers were 11.7% and 14.5%,

respectively.

We have gone into detail only for the two most

extreme pairs of measures in our data set. As

inspection of Tables 1–4 will show, the other two

pairs of measures yield results in between these

two extremes – from a large discrepancy between

methods that do or do not take the correlation into

account, to a relatively small discrepancy. These

results suggest that we should think of the

correlational issue as a continuum, and worry

less about the problem of measurement indepen-

dence as the correlation between measures

approaches the theoretical ideal of zero. However,

there is no recommended cut-off here, no

correlational threshold below which traditional

assumptions of independence can be used. Rather,

we recommend that investigators calculate the

correlation between measures in some relevant

reference population and decide (based on their

experimental goals) whether the correlation is

high enough to justify adjustments of the kind that

we have recommended here.

Who is Dissociated?

As we tried to illustrate in the Fred and Charlie

case, the problem of measurement correlation

applies not only to the number of cases that we

can find (i.e., whether we are prone to under- or

overestimation), but to the identity of the individ-

uals that we designate as ‘‘unusual’’ under a given

definition. Even though some correlation-based

techniques may yield results numerically similar

to those that assume measurement independence,

this does not mean that we will always ‘‘finger’’

the same suspects.

To illustrate this point, consider the compar-

ison used above, between the quadrant method

(which predicts 25% in each of two dissociative

zones, without taking the correlation into

account), and the 50% correlation ellipsoid

(which predicts 25% on each side of the diagonal,

outside of the 50% ellipsoid). As we noted earlier,

the quadrant method yields about one-fourth as

many dissociations as we would expect between

noun and verb naming if the two measures were

independent (i.e., 20 instead of 78–80 cases),

while the 50% correlation-based method actually

yields a slightly larger number than we would
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expect by chance when the þ.84 correlation is

taken into account (i.e., 85 instead of 78–80

cases). However, the distribution in Figure 6

shows that a very large number of these ‘‘found

cases’’ lie in the High/High and Low/Low

quadrants, which are excluded by definition with

the quadrant-based method. If we want to

preserve the clinical restriction that dissociations

should not fall in the relatively spared High/High

quadrant or the globally impaired Low/Low

quadrant, we can combine the quadrant technique

with the 50% correlation ellipsoid (corresponding

to the last line in Table 1). This hybrid method is

defensible, but it leads to a massive loss in the

number of dissociations that are obtained: We can

now identify only 14 cases (8.9%), 8 in the

Noun>Verb sector and 6 in the Verb>Noun

sector, which is actually lower than the yield

produced by the quadrant method. This reduction

in cases reflects the loss of a handful of patients

who are (technically speaking) within the respec-

tively High/Low or Low/High quadrants but also

fall within the correlation ellipsoid, relatively

close to the means for both measures.

Inspection of Tables 1–4 yields the following

generalization: if the correlation between mea-

sures is high, then correlation-based techniques

are almost always less conservative than methods

which assume independence (i.e., they identify

more cases as ‘‘dissociated’’), but they also tend

to be more conservative than methods which

assume independence (i.e., they identify fewer

cases as ‘‘dissociated’’) when the clinical restric-

tion excluding High/High and Low/Low cases is

applied. In other words, the set of individuals

whom we identify as ‘‘dissociated’’ can change

markedly under these different quantification

schemes. If the correlation between measures is

low, then these differences tend to disappear,

although there are still discrepancies in individual

cases (as inspection of Figs. 6–9 will reveal).

Which one of these methods is ‘‘right’’?

Which ones yields ‘‘the truth’’ regarding the

individuals who do or do not represent a double

dissociation? In order to determine which tech-

nique is ‘‘right,’’ we need some form of external

validation. This might include information about

the neural substrates for these profiles (e.g., one

criterion maps directly onto lesion type, in

patterns that we would predict based on other

kinds of neurological evidence), or it might

include some external set of behavioral measures

(e.g., the ‘‘right’’ method for classifying patients

on any pair of measures is the method that

predicts a coherent pattern of behavior on a

completely different set of measures). In the

absence of such external validation, there is no

‘‘right’’ way to quantify dissociations, no single

definition that is appropriate for every research

enterprise. Depending upon the investigator’s

research goals, it may be wise to include as many

candidates as possible, or it may be desirable to

use relatively stringent criteria so that we only

identify cases that would qualify as ‘‘dissocia-

tions’’ under virtually any quantification scheme.

We will return to this issue later. Our point here

is simply to show that quantification decisions

matter quite a lot, with individuals moving in and

out of the ‘‘dissociation zone’’ depending on the

technique that we adopt.

Asymmetries and Deviations

from Bivariate Normal

Whether or not we take the correlation into

account, all of the techniques that we have

described here assume that the data are normally

distributed within each measure. We attempted to

standardize both distributions, by converting all

raw scores (percentages) to z scores to equate the

means and variances, but these transformations do

not guarantee a normal distribution. If we were

successful in assuring a bivariate normal distribu-

tion, then we should always obtain symmetrical

results (with some degree of sampling error). That

is, the number of dissociations should be roughly

equivalent on each side of the diagonal, that is,

symmetrical. Indeed, if the measures were bivari-

ate normal, then there should always be a close

match between the observed and predicted num-

ber of dissociations when the correlation is taken

into account. Clearly this is not the case. Is this a

fatal flaw in the method that we have proposed?

At the very least, deviations from the bivariate

normal distribution do not invalidate the logic of

our argument: in order to determine whether a

dissociation is ‘‘unusual,’’ we have to have some

way of defining the ‘‘usual’’ relationship between

two target measures. In pursuit of this goal, there
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are several steps that one can take to deal with

deviations from bivariate normal. All of them start

with visual inspection of the scatterplot between

two target measures, with the selected correlation

ellipsoids superimposed.

The first remedy applies to deviations that arise

from floor and ceiling effects, that is, cases that

fall outside the correlation ellipsoid because their

performance is ‘‘too good’’ or ‘‘too bad’’ on both

of our measures. In research based on experi-

mental methods that are under the investigator’s

control, floor and ceiling effects can be removed

by adding items that are sensitive to individual

differences at both extremes of the distribution. If

this option is not available (e.g., in research using

archival data and/or standardized tests that cannot

be altered), the simplest solution is data trimming:

remove cases that fall above or below a specified

criterion. In the archival examples illustrated

above, we repeated all of our analyses with and

without those cases that were ‘‘true zeroes’’ (i.e.,

subjects who were untestable on one or both of

our target measures). Results were similar with

and without these cases, testimony to the robust-

ness of these results. However, deviations from

bivariate normal remained, and visual inspection

of our results suggests that these asymmetries are

not due to floor and ceiling effects alone. Hence

other remedies may be required.

A second remedy applies to systematic varia-

tions in the shape of the relationship between

two target measures. By definition, correlational

techniques test for the fit around a line. And yet

there are many situations in which another

function is appropriate, for example, the logistic

function that governs covariation between vocab-

ulary size and the early development of grammar

in young children (Bates & Goodman, 1997). If

the relationship is systematic, then it may be

possible to ‘‘linearize’’ the relationship by some

algebraic transform. Alternatively, the correlation

ellipsoids themselves could be tailored to the

distribution in question, fitting the space of

logistic functions that, for example, govern

90%, 70% or 50% of the cases.

A third remedy acknowledges the possibility

that deviations from bivariate normal are real, that

is, products of Nature that have been captured

faithfully by our measures. Suppose, for example,

that performance on Measure A is mediated by

perisylvian regions of the left temporal lobe while

performance on Measure B is mediated primarily

by regions in the fusiform gyrus. Because of the

distribution of the vascular system in the human

brain, strokes involving perisylvian cortex are far

more likely than strokes restricted to the fusiform

gyrus. Hence we should expect to find a

significant asymmetry in the distribution of

Measures A and B, with more cases of A < B

and fewer cases of B < A than we would expect

under the bivariate normal assumption. If this is

the case, then the asymmetry in our distribution

may be viewed as a discovery about Nature rather

than a limitation in our method. If we take the

third route and decide to live with our distribu-

tions as facts of nature, then we can use these

asymmetrical distributions as models with which

to evaluate data for new individuals or small

groups of patients.

SUMMARY AND CONCLUSION

The purpose of this paper was to illustrate some

problems that arise in quantifying the important

and influential notion of ‘‘double dissociations.’’

We have shown that the probability of obtaining a

single or double dissociation is strongly influenced

by the distribution of scores in the population from

which the patients of interest are drawn, including

not only the way that ‘‘extreme scores’’ are defined

within each measure (i.e., the means and standard

deviations) but also the correlation between those

measures. We illustrated these points by compar-

ing four pairs of scores, two from a language

battery administered to a large sample of patients

at risk for aphasia, and two from a nonverbal

battery administered to a large sample of patients

at risk for one or more forms of neglect. Within

each battery, we chose one pair representing one of

the highest correlations observed among the avail-

able measures, and another representing one of the

lowest correlations. We then compared the number

of dissociations that were detected under various

definitions, with and without taking the correlation

into account, with and without the restriction that a

dissociated case must always fall in the High/Low

or Low/High quadrant.
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We found first that the number of dissociations

we are able to detect is systematically related to

the magnitude of the correlation between mea-

sures. If the correlation is low (approaching zero),

we are able to find a relatively large number of

dissociations. However, this is not necessarily a

good thing: low correlations may reflect a true and

meaningful form of independence between mea-

sures, but they may also reflect high measurement

unreliability in one or both of the measures

in question. If the correlation is low because

measurement reliability is low, then we are at risk

for a large number of false positives, reflecting

nothing other than chance variation due to

measurement error. By contrast, if the correlation

between measures is high, then dissociations are

much more difficult to detect. Hence we are at risk

here for a large number of false negatives, missing

dissociations that may be very interesting on

theoretical grounds. There is no cure for the

problem of false positives other than experimental

rigor, detailed information about measurement

reliability, and a good theoretical basis for the

prediction of extreme scores. But we can defend

against some of these false negatives by taking the

correlation between measures into account. As we

saw, the correlation-based measures illustrated

here permit us to find a much larger number of

cases if the correlation was high; if the correla-

tion is low, the discrepancy between techni-

ques that assume measurement independence

and techniques that take the correlation into

account are markedly reduced (though not

eliminated).

Our second major conclusion revolves not

around the number of dissociations, but the

identity of the individuals that we locate with each

method. When correlations are high, the use of

correlation ellipsoids helps us to detect a larger

number of cases, but most of those cases are in the

High/High quadrant (patients who are relatively

spared on both measures) or the Low/Low

quadrant (patients who are globally impaired

despite differences in the magnitude of their deficit

on each measure). If we adopt a hybrid technique,

using a correlation ellipsoid but excluding High/

High and Low/Low cases, then we are left only

with the High-Low and Low-High quadrants.

Compared to methods that do not take the

correlation into account, we will necessarily obtain

fewer dissociations than we would detect by

assuming measurement independence. This is true

because the correlation ellipsoid rules out High-

Low and Low-High cases that are technically

inside a dissociated quadrant, but are also inside

the correlation ellipsoid and thus so close to the

means (i.e., the cross-point with z scores of zero on

both measures) that the relationship is really not

unusual. As we have noted, there is no a priori way

to specify whether a given method for identifying

dissociations is ‘‘right,’’ or whether it identifies too

many, too few, or the wrong individuals. This

determination can only be made through external

validation, using neurological and/or behavioral

evidence outside of the immediate data set, with a

well-specified set of theoretical goals. Our goal

here has simply been to point out how much the

correlation matters when one sets out to identify

dissociations of interests.

Our third set of conclusions pertains to

asymmetries and deviations from normality under

any and all of the definitions of dissociation that

we have tested here. All of these techniques

(including those that fail to take the correlation

into account) assume that measures are normally

distributed (bivariate normal in the case of the

correlation-based techniques). The world in

which neuropsychologists carry out their work

rarely corresponds to this assumed perfection.

Some of these deviations may prove to be

important and meaningful, reflecting the structure

of a brain that is certainly not random in its

construction. However, the deviations from nor-

mality and the asymmetrical dissociations that we

uncovered in the examples illustrated here were

usually small, and they were inconsistent in

direction across different quantification schemes.

Hence it seems likely (for these examples) that

these deviations from bivariate normal reflected

sampling error, including the kinds of ceiling and

floor effects that often occur in neuropsychologi-

cal research. Fortunately remedies are available to

help to deal with these deviations.

As a final point, we want to underscore the

importance of the reference population that is

chosen to calculate the correlation between

measures. For our purposes here, we used two

large samples of patients, one representing all
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consecutive cases across a three-year period who

were at risk for language disorders, and the other

representing all consecutive cases in an equivalent

period who were at risk for disorders of spatial

attention. These two pools of patients were likely

to yield dissociations in multiple directions,

among language measures and visuospatial mea-

sures, respectively, and hence appeared to us to

furnish an excellent starting point for the illustra-

tions provided here. But other reference popula-

tions may be more appropriate, depending on the

goals of the experimenter. For the measures that

were adopted here, healthy adults tend to score so

close to ceiling that we would have too little

variance to calculate meaningful correlations. But

there are many other forms of measurement (e.g.,

intelligence testing) for which this is certainly not

the case. Furthermore, although the correlations

among intelligence scales do tend to be high when

calculated across large samples of normal con-

trols, many normal individuals can be found who

display discrepancies of two standard deviations

or more between their ‘‘best’’ and ‘‘worst’’

subscales. Hence it would indeed be valuable in

some cases to construct correlation ellipsoids for

normal controls as the basis for evaluating the

probability of a given dissociation in clinical

populations. Alternatively, we may want to use

large and truly unselected samples of brain-

injured patients as our reference group, pooling,

for example, across left- and right-hemisphere

cases without making prior assumptions about the

pool in which language dissociations or spatial

dissociations are likely to occur. All of these

approaches could be valid, but each one would

lead to different interpretations, and are likely to

be used for different purposes.

We also would like to note that the applications

of these techniques are not limited to very large

archival datasets and that the methods are appli-

cable also to experimental studies with more

modest sample sizes. Indeed, we have success-

fully applied correlation-based outlier analyses of

the sort described here to data collected from 30

aphasic patients in an experiment which aimed to

examine neural correlates of nonverbal auditory

processing in relation to speech comprehension

(Saygin, Dick, Wilson, Dronkers, & Bates, 2003).

In this sample, we were able to reliably identify

with the techniques depicted here a patient with a

rare type of auditory agnosia and further testing

confirmed the analyses (Saygin & Moineau, 2002).

To conclude, the particular methods illustrated

here for the identification and quantification of

double dissociations have implications for at least

three aspects of neuropsychological research.

First, because double dissociations are often

used to draw inferences about the architecture of

the normal mind/brain, we have provided some

techniques that investigators may want to use to

protect against false negatives as well as false

positives, locating potentially interesting cases

that might not be evident if the correlation

between variables were not taken into account.

We are not claiming that any single quantification

scheme is right or wrong. Indeed, it is debatable

whether there really is such a thing as a ‘‘true

dissociation’’ independent of anyone’s theoretical

assumptions. One might argue, for example, that

the ‘‘right’’ definition of a behavioral dissociation

is the one that maps most directly and transpar-

ently onto the neural substrate, matching predic-

tions regarding lesion type. For example, if it is

the case (as some neuroscientists have argued)

that verb meanings are mediated by the frontal

lobes to a greater extent than noun meanings, then

the best method for quantifying noun-verb

dissociations might be the one that correlates best

with a distinction between anterior and posterior

brain injury. Alternatively, the ‘‘right’’ definition

for any two behavioral measures may be the one

that generalizes reliably and robustly to alter-

native measures of the same underlying construct.

For example, the best metric for identifying noun-

verb dissociations on a naming task might be the

method that correlates most highly with noun

versus verb production in free speech. In the

absence of such external validation, the investi-

gator must determine the method of choice based

on his or her scientific goals: would it be better to

choose a conservative method, or to cast a wider

net in search of potentially interesting cases?

Furthermore, these methods may provide

additional constraints and new avenues for

lesion-symptom mapping. With the advent of

new techniques for functional and structural brain

imaging, clinical researchers have the opportunity

to study lesions in vivo, including structurally
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intact regions that are functionally silent (or

hypometabolic) during linguistic and cognitive

tasks. However, because these applications are

expensive,procedures for patient selection become

more critical than ever. Instead of basing patient

selection solely on extreme scores, a correlation-

based method can be used to select candi-

dates whose behavioral profiles are unusual

under virtually any definition, increasing the like-

lihood of a strong positive result in an imaging

study.

Third, these correlation-based methods may be

a useful adjunct in patient diagnosis, and in the

evaluation of recovery (with or without rehabilita-

tion). In pursuit of this goal, we are currently

applying these techniques to several large data

sets for aphasic patients in English, Italian and

Chinese, re-evaluating the relationship between

classic aphasia subscales and their use in patient

classification when the correlation between scales

is taken into account (e.g., see Bates, Saygin,

Moineau, Marangolo, & Pizzamiglio, 2002).
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confirmer l’opinion de M. Gall, sur le siège de
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