New Directions in Research on Language Development

ELIZABETH BATES
University of California, San Diego

AND

GEORGE F. CARNEVALE
Scripps Institution of Oceanography

In this paper, we will describe what are (in our view) the newest and most exciting trends in current research on language development: trends that are likely to predominate in the few years that remain until the millennium. The paper is organized into six sections: (1) advances in data sharing (including the Child Language Data Exchange System), (2) improved description and quantification of the linguistic data to which children are exposed and the data that they produce (with implications for theories of language learning); (3) new theories of learning in neural networks that challenge old assumptions about the "learnability" (or unlearnability) of language, (4) increased understanding of the nonlinear dynamics that may underlie behavioral change, (5) research on the neural correlates of language learning, and (6) an increased understanding of the social factors that influence normal and abnormal language development. © 1993 Academic Press, Inc.

Forecasting is a thankless task. The U.S. Weather Bureau figured that out a number of years ago. When we were children,¹ the weathermen used to pore over their statistics and come up with a "yes" or "no" decision: "It will rain tomorrow." In today's world, the statistics are passed on to us directly, unadorned: "There is a 40% probability of rain tomorrow." If you want to organize a picnic based on those statistics, it's your problem.

A version of this paper was presented in a symposium called "Setting a Path for the 1990s," organized by Ross Vasta at the April 1991 meeting of the Society for Research in Child Development. We are grateful to Kim Plunkett, Jeff Elman, and Virginia Marchman for extensive discussion of many of the points presented here. All the errors and misunderstandings that persist despite their best efforts are entirely our own. Partial support to the first author during preparation of the manuscript was provided by the NICHD grants "Cross-linguistic studies of aphasia" and "Origins of communication disorders," and by the John D. and Catherine T. MacArthur Foundation Research Network on Childhood Transitions (Robert Emde, Network Director). Address correspondence and reprint requests to Elizabeth Bates, Center for Research in Language 0526, University of California, San Diego, La Jolla, California 92093-0526 (email: bates@crl.ucsd.edu).

¹ One of us (E.B.) is the daughter of a weatherman. He met E.B.'s mother shortly after World War II at the U.S. Weather Bureau Office in Wichita, Kansas, where she served as the "weather girl" for a local radio station. The perils of forecasting were passed on to their children very early, by angry neighbors returning from rain-soaked picnics and by beer-soaked uncles passing on unsolicited vocational advice at holiday gatherings.

0273-2297/93 $5.00
Copyright © 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.
In this paper, we are going to take the same conservative strategy. We will describe what are, in our view, the newest and most exciting trends in current research on language development and assume (hope) that these are the trends that will predominate in the few years that remain until the millennium. The paper is organized into six sections: (1) advances in data sharing, (2) improved description and quantification of the linguistic data to which children are exposed and the data that they produce, (3) new theories of learning in neural networks that challenge old assumptions about the "learnability" (or unlearnability) of language, (4) increased understanding of the nonlinear dynamics that may underlie behavioral change, (5) research on the neural correlates of language learning, and (6) an increased understanding of the social factors that influence normal and abnormal language development.

(1) DATA SHARING

In contrast with some of the sections that follow, what we have to say here is surely uncontroversial: Any field profits immensely when investigators are willing to pool their efforts, sharing data and other resources for the common good. In the field of child language, there have been some very healthy trends in this direction in the past 5 years, with important implications for the way that research will be done for the foreseeable future. We will concentrate here on two compelling examples of successful collaboration on a large scale: the Child Language Data Exchange System, and the MacArthur Communicative Development Inventories. We present these examples in some detail (and brag at length) in the hope that other examples of the same quality will follow, setting a very positive trend for the future.

The Child Language Data Exchange System (ChiLDES)

The Child Language Data Exchange System (ChiLDES) was founded in 1984 by Brian MacWhinney and Catherine Snow, at an organizational meeting in Concord, Massachusetts, attended by many of the most important figures in child language research (MacWhinney & Snow, 1985). The need for such a system was clear, but it was less obvious how to meet that need. Longitudinal studies of language development have played a major role in the modern history of this field, with a primary focus on samples of free speech in naturalistic situations. But a single hour of free-speech data typically involves 10 to 40 hr of transcription and coding, depending on the interests of the investigator. In other words, this is an expensive and labor-intensive enterprise. And yet, prior to the foundation of ChiLDES, free-speech transcripts were gathered separately by each team of investigators, milked of their value for that particular project, and left to molder on laboratory shelves. Investigators in the field had long
recognized the wastefulness of this practice, since any single sample of free-speech data can have multiple uses that were never envisioned by the researcher who gathered those data in the first place. But there was no obvious way to centralize hard copies of free-speech data while preserving access to scientists from many different institutions. By the early 1980s, it was clear that microprocessor technology could be used to resolve this problem, creating a living archive with the potential for immediate electronic access and inexpensive duplication. The idea of such an archive was conceived independently in the early 1980s by investigators at several different institutions (e.g., Harvard, Berkeley, Carnegie Mellon, and the Max Planck Psycholinguistics Institute), but no one had the necessary resources to get such an enterprise off the ground.

In 1983, MacWhinney and Snow submitted a proposal to the MacArthur Foundation (sponsored by the Early Childhood Transitions Network) for a computerized child language data exchange system. The Foundation provided substantial funding in the first years of the project, while MacWhinney and his colleagues provided a great deal of hard work and ingenuity to solve the myriad technical, legal, social and scientific problems that were involved in making ChiLDES work. One of the most important contributions was CHAT, a complex but flexible multitiered coding scheme for computerized free-speech transcripts. Prior to the development of CHAT, each investigator made independent and often idiosyncratic decisions about the format for coding free speech (e.g., what to leave out and what to keep, what symbols to use, how to evaluate and count "speech errors" of different kinds). Establishment of a common archive has meant that child language researchers have had to pool their knowledge and experience to develop a common set of coding decisions. CHAT developed iteratively across a 5- to 6-year period, as investigators from all over the world pointed out new problems and made new recommendations for this first-ever universal language coding system. The manual itself is now the size of a telephone directory for a mid-sized city and has just been published as a book by Erlbaum Press (MacWhinney, 1991). Another important contribution is CLAN, a set of procedures for the automated analysis of language transcripts; CLAN software is (like use of ChiLDES itself) free of charge to any scientist who agrees to respect the ChiLDES guidelines (e.g., protection of confidentiality, proper citation of original sources, and return of new results and new analyses to the ChiLDES system itself).

The MacArthur Foundation's responsibility for ChiLDES ended around 1988. Since that time, MacWhinney and Snow have kept the enterprise going entirely through independent funding from the National Science Foundation and the National Institutes of Health. The latter includes a large grant from NICHD called "Foundations of language as-
essment, 'to solve new problems in data analysis and to extend these analytic tools to a range of clinical populations. In addition, investigators in other countries (e.g., Italy, Denmark) have obtained funding from their governments to prepare data in their language for contribution to the ChiLDES system. The CHAT and CLAN procedures have also figured prominently in many individual grant proposals and it is now quite common for scientists to promise contribution of their data base to ChiLDES as an important selling point in their efforts to obtain funding. A small group of investigators in neurolinguistics have now established an analogue called ALDES (Aphasic Language Data Exchange System), a system that is "piggybacked" onto ChiLDES, profiting from all the technical, legal, social, and scientific innovations that ChiLDES has provided.

But the most important outcome has been the impact of a large shared data base on scientific activity within the field of developmental psycholinguistics. When MacWhinney and Snow submitted their last proposal for renewal of the NIH grant (a proposal that met with considerable success), they were able to cite no fewer than 250 books, journal articles, chapters, conference proceedings, and conference presentations based wholly or partly on the ChiLDES data base. To be sure, a system for sharing old data is no substitute for new experiments and new forms of data collection. But the data exchange system has several uses that greatly enhance the quality of new scientific activity: (1) new hypotheses can be checked against existing data and refined prior to the launching of an expensive new research project; (2) data from several different projects can be pooled to provide the necessary power to test hypotheses that cannot be evaluated with a small sample; (3) novice researchers can use the existing data base to learn about the general properties of child speech, before they are "set loose" on real live children; (4) researchers in fields like artificial intelligence and neural modelling (i.e., researchers who have no other access to "real" child language) have used ChiLDES data to model aspects of the language-learning process; (5) in the process of developing a common coding system, researchers have become aware of the theoretical assumptions behind each individual coding decision; as a result, communications in our field have improved and our methodology is far stronger and more explicit than it was before ChiLDES was founded.

The MacArthur Communicative Development Inventories (CDI)

Another example of successful large-scale collaboration in our field comes from the development of a new parental report instrument for the early stages of lexical and grammatical development, the MacArthur Communicative Development Inventories, known as the CDI (Fenson, Dale, Reznick, Thal, Bates, Hartung, Pethick, & Reilly, 1993). Here too,
a group of researchers has responded to a widespread need in our field, coming up with a solution that would be beyond the means of any individual laboratory.

The earliest stages of language learning are difficult to observe, because the behaviors in question are new, infrequent, and unpredictable. The most valid and reliable information comes from observers who are with the child all the time, i.e., the child’s own parents. For this reason, diary studies by the parent/scientist have been central to our understanding of developments in the period from 8 to 30 months (e.g., Dromi, 1987). Needless to say, such studies are few and far between and it is difficult to generalize from case studies of privileged academic infants to the range of variability that we might expect across the normal population. To develop solid norms for early language development, we had to find a way to “bottle” the diary study and administer it on a very large scale.

For more than 15 years, researchers have been developing a parental report instrument that taps into the parents’ wealth of knowledge about their child’s burgeoning linguistic abilities (Bates, Camaioni, & Volterra, 1975; Bates, 1979; Shore, O’Connell, & Bates, 1984; Shore, 1986; Reznick & Goldsmith, 1989). At first, this instrument was developed and applied on a very small scale, as we learned how to obtain valid and reliable data from parents. For example, we learned how to get around the parent’s natural pride and lack of expertise by asking only about current behaviors (retrospective report has proven very unreliable), asking only about behaviors that are just starting to happen (so that a parent has a reasonable chance to keep track), and asking questions in a form that avoids the need for interpretation and draws on the power of recognition memory (e.g., “Does your child say ‘tiger’?” as opposed to “What animal words does your child say?”). When these criteria are followed, parental reports of language development have proven valid and reliable.

A final version of this instrument has been produced by Larry Fenson and colleagues, with support from the MacArthur Foundation (Fenson et al., 1993). This version comes in two parts: the Infant Scale (which examines word comprehension, word production, and aspects of symbolic and communicative gesture, in the period from 8 to 16 months) and the Toddler Scale (which looks at word production and the early phases of grammar, in the period from 16 to 30 months). Normative data have been gathered from more than 1800 normally developing children, in three different cities (San Diego, Seattle, New Haven). For approximately one-third of the sample, a longitudinal follow-up was also obtained (at a 1-month interval for children in New Haven; at a 6-month interval for children in San Diego and Seattle). For subsamples of the children at each site, the team also conducted a series of small “validation modules,” to ensure that the same high correlations between parental report and lab-
oratory observations obtained in earlier studies had been preserved in the new and final version of the instrument (Dale, Bates, Reznick, & Morisset, 1989; Dale, 1990, 1991; Fenson, Thal, & Bates, 1990; Jackson-Maldonado, 1990; Fenson, Dale, Bates, Reznick, & Thal, 1993). So far, all these validation studies provided solid evidence that the CDI reflects real and observable events in early language development. For example, the word production checklist correlates with laboratory observation of vocabulary in a range from +.60 to +.80, depending on the study. The grammar scale works just as well, if not better, correlating with Mean Length of Utterance (the single best laboratory index of grammatical complexity at this point in development) in a range from +.75 (at 24 months) to +.82 (at 20 months). In addition, the internal reliability of both scales has proven to be extraordinarily high, with split-half correlations averaging +.95 to +.99. These validity and reliability figures are comparable to results obtained with well-known instruments like the Stanford Binet Adult Intelligence Scale.

The norming study has provided a wealth of information in its own right, on the shape and nature of the first words and first sentences children use, on the range of variability that can be observed in healthy children from 8 to 30 months, on the contribution (or noncontribution) of demographic factors to early language development (e.g., sex differences are real, but they are much smaller than previously believed), and on the relationship between vocabulary development and the emergence of grammar (i.e., grammar appears to be tightly linked to word learning, above and beyond the general effects of age and maturation shared by these two linguistic domains). These data have already helped to decide between alternative hypotheses about the emergence of language, and they have provided absolutely compelling evidence about normal variation. In addition, clinicians now have tools to determine what really constitutes a "late talker," and several clinical studies have already shown that the CDI can be used as early as 18 months of age to identify children who are at risk for specific language impairment (Thal & Bates, 1988; Thal, Tobias, & Morrison, 1991).

This simple low-cost instrument is beginning to have a broad impact; in the 3 years since Fenson et al. first began to make the instrument available to colleagues in the field (on a nonprofit basis), they have sent out more than 17,000 copies of the instrument. For example, the CDI will be a central instrument for the evaluation of language development in a Pittsburgh University Medical Center study of otitis media (involving more than 6000 children), and it will be a major outcome variable in a NIH-funded collaborative study of day care vs home care at 10 different research sites across the country. Philip Dale and Larry Fenson have also established a CDI data base, to centralize information from different nor-
mal and abnormal populations. It seems clear that they have met a huge need, in clinical as well as research settings, for a cost-effective but highly reliable and valid tool for the assessment of early language development. Not surprisingly, colleagues in other countries have already begun to develop adaptations of the CDI for their own language, and versions are now available in Italian (Camaioni, Caselli, Longobardi, & Volterra, 1991), Spanish (Jackson-Maldonado, 1991; Jackson-Maldonado, Marchman, Thal, Bates, & Gutierrez-Clellen, 1993), Japanese (Ogura, 1991), and American Sign Language (Reilly, 1992).

(2) QUANTIFICATION OF LINGUISTIC INPUT AND OUTPUT

Because of ChiLDERS and related large-scale efforts at data sharing, our field is now in a much better position to describe and quantify linguistic behavior—including the language produced by children and the linguistic input to which children are exposed in different language communities, at different points in development. Indeed, one might well ask how we managed before such tools were at our disposal.

The answer lies, at least in part, in a series of old assumptions about the nature of language development. Until recently, most researchers in this field have viewed language learning in purely qualitative terms, as a kind of theory-building process in which children test alternative hypotheses about their grammar in a "yes-no" fashion. In some theories, it is further assumed that these hypotheses are innate and relatively explicit (e.g., the "parameter-setting" approach—Hyams, 1986; Roeper & Williams, 1987). In other theories, the suggestion has been made that children derive hypotheses about their grammar from aspects of nonlinguistic cognition (e.g., postulation of a rule for agent-action mapping—Braine, 1976; Bowerman, 1973). From either perspective, it is usually assumed that quantitative factors like type and token frequency play a minimal role (e.g., Brown, 1973; Pinker, 1981). Indeed, some researchers have gone so far as to suggest that language development can take place in the absence of any input at all (Goldin-Meadow & Mylander, 1985; Crain, 1992). Whether or not they embrace this radical nativist view, developmental psycholinguists have been skeptical about the need for a precise statistical characterization of the child’s linguistic output and/or the linguistic environment.

There is of course one sure-fire way to guarantee the failure of a quantitative approach to language learning: quantify things badly and show thereby that statistical effects do not matter. For example, Brown and Hanlon (1970) studied the linguistic environment of one child, Adam, and claimed that his parents rarely provided any explicit negative feedback about the grammaticality of the child’s speech (i.e., they rarely corrected the child and rarely rephrased incorrect utterances into a correct form). Many students of language development cite the results of this small
study as definitive evidence that children do not receive negative evidence (Pinker, 1984; Bohannon & Stanowicz, 1988; Bohannon, MacWhinney, & Snow, 1990; Sokolov & Snow, 1992), a claim with important theoretical repercussions (see section 3, below). Of course Brown and Hanlon cannot be held responsible for this overgeneralization of their results. The responsibility rests on the shoulders of those who assume that one case study (with limited quantification and a limited definition of "feedback") can settle an issue of this magnitude for all time. With the increased precision that is now available (thanks in part to the ChiLDES data base), a number of researchers have now shown that a great deal of implicit negative evidence is present in the data to which children are exposed, including contingent partial repetitions that occur several utterances "downstream" from the child's initial error (Bohannon & Hirsh-Pasek, 1984; Sokolov & MacWhinney, 1990). In fact, they have shown these effects within the very data base that Brown and Hanlon used in the early 1960s.

This is not the only example of its kind. There are a number of instances in the last few years in which results of an earlier study have been turned around entirely by a more thorough and sophisticated quantification of the same data base. For example, Hyams (1986) examined isolated sentences from secondary sources on English, German, and Italian child language, and drew some very powerful conclusions about "sudden" changes in linguistic output based on setting of innate parameters. Since publication of this interesting and provocative work, researchers in each of these language groups have put Hyams' ideas to a more rigorous test, returning to the language transcripts that were used to generate the secondary sources on which Hyams based her conclusions (for English, see O'Grady, Peters, & Masterson, 1989; Loeb & Leonard, 1988; Radford, 1990; for German, see Jordens, 1990; for Italian, see Valian, 1990, 1991; Pizzuto & Caselli, 1992). In virtually every case, her initial conclusions have been rejected in favor of a more gradual form of "garden variety" learning.

But what exactly is "garden variety learning"? The role of input statistics in language development depends crucially on the theory of learning that we set out to test (an issue to which we shall turn shortly). At this point, we simply want to emphasize that the field of child language has reached a new level of precision and sophistication in the way that we code and quantify linguistic data. Single-case studies, qualitative descriptions, and compelling anecdotes will continue to play an important role. But they cannot and will not be forced to bear the full weight of theory building in our field.

(3) LEARNING, LEARNABILITY AND NEURAL NETWORKS

One of the most influential movements in child language research
throughout the 1980s was an enterprise called Learnability Theory (Wexler & Culicover, 1980; Pinker, 1979; Baker 1981). This line of research is actually a branch of computational linguistics, and in many cases it is practiced without any direct use of behavioral data from real human children. Instead, the field has grown up in response to a logical problem, called Baker's Paradox: How can children recover from errors of overgeneralization (e.g., "goed," "stooded up") when nobody tells them that they are wrong? In a much-cited paper within computational linguistics, Gold (1967) provided a formal proof showing that grammars of a certain complexity (i.e., context-sensitive grammars, a class to which natural languages supposedly belong) could not be learned by an hypothesis-testing device that is exposed only to positive evidence (i.e., examples of sentences that are possible in the grammar), without negative evidence (i.e., examples of sentences that are not possible in the grammar). This finding was presented as a formal proof, but it can be paraphrased in common-sense terms: Even if an hypothesis-testing device were to "guess" the right grammar (G) at some point in learning, it would have no way of knowing that it was right. It might go on to guess a bigger grammar (G + 1), containing sentence types that are not permitted in G. In the absence of negative evidence, the machine is playing a guessing game of the "Hot and Cold" type in which the data tell it "You're getting warmer" without ever providing information of the opposite sort (i.e., "You're getting colder"). The argument is similar to a broader argument against the possibility of inductive learning raised by Nelson Goodman (1979).

There are only a few ways out of the learnability paradox: (1) assume that negative evidence is available in some form; (2) relax the criteria used to evaluate when learning is complete (e.g., if the right grammar is "G" and the system guessed "G + 1" or even "G - 1," call it "Close enough for Government work"); (3) provide the system with enough prior knowledge to rule out impossible grammars and zero in on a finite set of possible grammars. For the reasons outlined above (i.e., the Brown and Hanlon study), most researchers working within the learnability paradigm assume that negative evidence is not available to real human children. They also argue that a relaxation of success criteria flies in the face of what we know about the nature of adult linguistic knowledge (i.e., an abstract set of crisp and discrete rules that go well beyond the data to which children are exposed). That leaves only one solution: Assume that a great deal of innate knowledge is available.

From this point of view, learnability analysis can be viewed as a kind of equation, in which values are assumed for three important factors on the left-hand side of the equation: the nature of the target grammar (i.e., the knowledge that has to be learned), the nature of the learning device, and the nature of the data set to which that device is exposed. The right-hand
side of the equation is the amount and kind of innate knowledge that we have to assume for learning to go through, under the assumptions (values) assigned on the left. The left side of Table 1 illustrates the assumptions that are usually made by learnability theorists working within the field of child language. First, they assume (following Gold) that the target grammar consists of a set of abstract rules applied to strings of discrete symbols, generating all possible sentences (and no impossible sentences) in the target language. Second, they assume that the learning device itself is an hypothesis-testing device that "guesses" a whole grammar (and/or an individual rule in that grammar) and tests it against a succession of input strings until it is ruled out (i.e., until a string is encountered that cannot be accounted for by the grammar that is currently under consideration). Note that the grammar itself is made up of discrete entities, and the decision process applied by the learning device is equally discrete. That is, a candidate rule or set of rules are accepted, or rejected, in a yes–no fashion. Obviously there is little room for error with a brittle learning device of this kind; a little bit of bad data or an off-course search through the space of possible grammars could derail the system forever. Finally, they assume that the linguistic input is limited to positive evidence, and they often make the further assumption that this positive evidence is not very good. At best it underrepresents the range of sentence types available in the grammar; at worst, it is faulty and error-prone, so that it actually misrepresents the range of possible sentences that the grammar would permit. Given these assumptions—an abstract grammar that must

| Table 1: Alternative Assumptions and Solutions to the Problem of Language Learnability |
|---|---|
| Strong version | Weak version |
| 1. Target grammar | A system of discrete rules and/or principles operating over strings of discrete symbols | System of weighted form-function mappings |
| 2. Data base | Positive data | Positive data |
| | Underdetermined | Underdetermined |
| | Unsystematic | Unsystematic |
| 3. Learning device | Discrete 'yes/no' device that tests whole grammars and/or individual rules one at a time against each input string | Robust probability sampler |
| | | N-Layer connection space |
| | | Nonlinear dynamics |
| 4. Amount of prior knowledge required for learning | High | Low |
be learned by a brittle hypothesis-testing device, with a faulty and limited database—an extensive amount of innate knowledge must be assumed for learning to go through.

The right side of Table 1 shows that a different conclusion can be reached if we change some of the values on the left-hand side of the equation. Suppose, for example, that we assume a different kind of learning device: Instead of a brittle hypothesis-testing device that reaches "yes/no" conclusions, one at a time, we assume a device that samples probabilistically from the input strings. Although this does not solve the problem completely, a probabilistic device of this kind would be much less error prone; it draws its conclusions from the "solid" regions of the input space and cannot be thrown off too far by a little bit of bad data. Suppose, in addition, that we assume a different kind of target grammar: instead of a list of absolute rules over discrete symbols, we assume that the target grammar consists of a set of probabilistic mappings between form and meaning. Under these more plastic assumptions (i.e., a "rough and ready" learning device and a target with fuzzier boundaries), we end up with a less stringent definition of learning itself, where "success" is also defined in approximate terms (i.e., "close enough for Government work"). In short, by turning a discrete and absolute definition of learning into a stochastic process, learnability may be possible with far fewer assumptions about innate knowledge (i.e., with far less "stuff" on the right-hand side of the equation).

But there are even more radical ways to turn the learnability problem around, a qualitatively different approach to learning that involves much more than a relaxation (lowering?) of standards. Let us illustrate this point with a metaphor. Figure 1a displays a daunting array of arrows pointing in different directions. Assume that all these arrows represent a set of possible paths. The learner’s problem is to uncover the "right" path, i.e., the overall direction that it ought to take based on all this information. Which one is the "right" arrow? Imagine the poor learner forced to sample these "possible arrows" one at a time, with no information about "impossible arrows"? Figure 1b shows that same situation, with more data. Obviously more data does not help! It only makes the problem worse. Under the assumption that learning consists solely of "sampling arrows one at a time," it should be clear why no conclusion can ever be reached.

Suppose, however, that the same information is evaluated in a different way, applying an operation called vector addition. A vector is a mathematical entity that expresses two aspects of a single movement through some hypothetical space: direction and distance. Each of the arrows in Figs. 1a and 1b illustrates an individual vector in a two-dimensional space. Whenever two vectors are added together, the result is another
vector, i.e., a single movement through the same space (Movement C) that reflects the combined effect (in distance and direction) of carrying out both Movement A and Movement B. An illustration is provided in Fig. 1c. As it turns out, the multitude of arrows in Figs. 1a and 1b contain a robust and significant generalization, if those arrows (or some representative subset of those arrows) are combined through vector addition. Figure 1d illustrates the "mega-arrow" that would result by applying vector addition to the "data" in Figs. 1a and b. This result is certainly not
obvious to the naked eye, much less to the poor one-at-a-time-sampler-of-arrows. But it is there, in the data set as a whole and in any robust and representative subsample of those data.

Language learning is not the same thing as vector addition. This is, after all, a parable. The main point is that the same stimulus set may be impoverished or very rich, depending on the techniques used to explore it. Forms of learning that are impossible in one framework may be quite plausible in another—which brings us to the main point of this particular section, the availability of a new paradigm for the study of learning that has great potential for our understanding of language development.

As we have already pointed out, the learning device assumed by most investigators working within the Learnability framework is a limited, brittle and highly unrealistic device. But for approximately 30 years of research in language development, that has been the only learning device under consideration—which is tantamount to saying that 30 years of research on language acquisition have been carried out in the absence of a theory of learning per se. Indeed, some investigators have denied that learning is at all relevant to language development, a position that is well illustrated by the following quote from Piatelli-Palmarini (1989, p. 2):

1. for one, see no advantage in the preservation of the term learning. We agree with those who maintain that we would gain in clarity if the scientific use of the term were simply discontinued

Fortunately for those of us who cling to a stubborn interest in learning and change, Piatelli-Palmarini’s recommendations have not been followed. Instead, the 1980s witnessed some dramatic developments in our understanding of the learning process, based on a radically different form of computer architecture than the standard serial digital computer that has dominated our view of the mind since the 1950s (for a detailed discussion, see Bates & Elman, 1993). This new approach goes under several names, including Parallel Distributed Processing (Rumelhart & McClelland, 1986), Connectionism (Hinton & Shallice, 1989; Bates & Elman, 1993), and/or Neural Networks (Churchland & Sejnowski, 1992). A full review of connectionism is well beyond the scope of this small paper, but a few words about the difference between traditional computer models of learning and the new connectionism paradigm may be useful.

In traditional computer models, knowledge is equated with a set of programs. These programs consist of discrete symbols, and a set of absolute rules that apply to those symbols. By “discrete” we mean that a symbol is either present or absent; there is no such thing as 50% of a symbol. By “absolute,” we mean that a rule always applies when its conditions are met; there is no such thing as 25% of a rule. Under these assumptions, it is very difficult to conceive of a way that the system could
"settle in" to an approximation of a target grammar. Furthermore, in traditional computer models the knowledge (software) is physically and logically separate from the processor itself (hardware). Programs have to be retrieved, loaded up into some short-term processor, and then put back where they came from. The program itself is executed, one step at a time, by a single Executive Processor. This assumption of seriality would result in a serious "bottleneck" on processing, if it were not for the fact that modern computers are so very fast—much faster, in fact, than the time it takes for a single piece of information to move from place to place in the human brain. Finally—and this is the most important point for our purposes here—there are only two ways that learning can take place in a traditional computer model: programming, or hypothesis-testing. In learning-by-programming, someone or something has to put the knowledge directly into the computer by hand. In learning-by-hypothesis-testing, possibilities that were already there in the program (i.e., "innate" hypotheses) are accepted or rejected, depending on their fit to the data. In other words, nothing really new can happen if we assume that the mind is like a serial, digital computer: Either the knowledge is already there in the machine or the knowledge is already there outside the machine in the form of a computer program.

Connectionism is based on a very different metaphor for mind and brain, a computational device called the Connection Machine. This device consists of a large number of highly interconnected units that operate locally but converge in parallel to solve problems and extract invariant cues from a highly variable environment. These systems are important for developmental psychology for several reasons. First, they are self-organizing systems; that is, they change and learn in ways that are not directly controlled by an experimenter/programmer, and they can be used to discover properties of the input that experimenter did not see before the simulation was underway. Second, they are nonlinear dynamic systems; their behavior is not fully predictable, and they often display sudden and unexpected changes in behavior of the kind that we so often witness in children and adults (see below). Third, they are "neurally inspired," brain-like systems; as such, they provide a new level of analysis midway between brain and behavior, promoting new forms of collaboration between behavioral scientists and neuroscientists with a common interest in learning and development. The connectionist movement has taken cognitive science, computer science, and neuroscience by storm, and it has returned the issues of learning and change back to center stage in all these fields. The movement has great potential for the field of developmental psychology; at the same time, developmental psychologists can offer connectionism the fruit of their experience and knowledge of change in real human beings.
Within developmental psycholinguistics, connectionism has already resulted in a reexamination of our assumptions about learnability. There are now a number of compelling demonstrations of language learning in neural networks, showing that these systems can (1) extract general principles from finite and imperfect input, (2) overgeneralize these principles to produce creative "errors" of the kind that are often observed in children (e.g., "comed," "goed," "stood up"), and (3) recover from these errors of overgeneralization and converge on normal performance in the absence of negative evidence (for examples, see Plunkett & Marchman, 1991, 1993; Marchman, 1992; Elman, 1993; MacWhinney & Leinhach, 1991). Some serious criticisms have been raised about the nature and limitations of neural networks for language learning (Pinker & Prince, 1988; Pinker & Mehler, 1988), but so far each of those criticisms has been countered effectively (especially MacWhinney & Leinhach, 1991; Seidenberg, in press). Besides the well-known benchmark studies of the English past tense, connectionist simulations of language learning have been carried out in a wide range of domains. There have been successful demonstrations of language learning with minimal innate structure in areas of grammar where the traditional model has had its greatest impact, such as the learning of long-distance dependencies (a typical example would be the subject-verb agreement relationship between "BOYS" and "ARE" in a sentence like "THE BOYS that the woman that I saw invited to the party ARE COMING"—Elman, 1991). Connectionist models have also been applied successfully to problems that have proven difficult if not intractable for traditional models, fuzzy categories that defy an explanation in terms of discrete symbols, features, or rules. Examples include "un"-prefixation (e.g., why can we say "Unhook" but not "Unhung"?—Bowerman, 1982; see Li, 1992, for a successful simulation of this phenomenon), and German gender (e.g., why do Germans use a neuter form for "little girl" but a feminine form for "bottle"—see Maratsos, 1983, for a statement of the problem, and MacWhinney, Leinhach, Taraban, & McDonald, 1989, for a solution). There have been interesting extensions of this work into simulations of historical language change (why do some forms fade away while others take over across the history of a language?—Hare & Elman, 1992; Thyme, Ackerman, & Elman, 1992), simulations of language processing in the "adult" net (Weckerly & Elman, 1992), and simulations of language breakdown in "damaged" nets (Seidenberg & McClelland, 1989; Hinton & Salatice, 1989; Marchman, 1993; Dell & Juliano, 1991; Martin, Saffran, Dell, & Schwarz, 1991). It looks as though this field may be moving toward a unified theory of how language changes through time, at several different time scales from milliseconds to centuries. The prospects for productive work on the nature of language learning are excellent.
Someday someone will no doubt find a set of limitations that these systems cannot overcome, but at this point in time it is not at all clear what those limits will be. One reason why we cannot predict the limitations of neural network models lies in the fact that these models are nonlinear dynamic systems—which brings us to the next point.

(4) NONLINEARITY IN LANGUAGE DEVELOPMENT

Nonlinearity is a fashionable topic in the natural sciences, and it is a topic that we are beginning to hear more about in research on brain and behavioral development (Thelen, 1991). We are convinced that nonlinearity will also play a growing role in the way we think about learning and change in the linguistic domain. To make that point, we need to distinguish between two forms of nonlinearity: nonlinear outcomes (i.e., a nonlinear relationship between time and behavioral outcomes, which may be generated by a linear equation) and nonlinear dynamics (i.e., change that is generated by a nonlinear equation). These two aspects of nonlinearity have equally important but logically distinct implications for theories of language development.

By definition, a relationship between two variables is linear if it can be fit by a formula of the type

\[y = ax + b, \]

where \(y \) and \(x \) are variables, and \(a \) and \(b \) are constants. Any relationship that cannot be fit by a formula of this kind is, by definition, nonlinear. It is remarkable how much of nature (including human behavior) can be described by linear equations (at least within some limited range). And that is a good thing too, because equations of this kind are very well-behaved and well understood. Perhaps for these reasons, behavioral scientists often assume linearity (implicitly or explicitly) in their efforts to explain patterns of change. We are surprised when behavioral patterns deviate from linearity on some level, and we are often tempted to spin complicated stories and postulate external causes that would not be necessary if we took a nonlinear view. Let us illustrate this point with a few examples.

Figure 2a illustrates a hypothetical linear relationship between two variables, \(x \) (on the horizontal axis) and \(y \) (on the vertical axis). For purposes of argument, let us assume that \(x \) refers to a time variable \(t \), and \(y \) stands for quantities of some measurable behavior. In the specific relationship illustration in Figure 2a, \(t \) stands for an age range from 6 to 40 years, and \(y \) represents the estimated number of words in the vocabulary of the average English speaker, from 14,000 words at age 6 (Templin, 1957; see also Carey, 1982) to an estimated average of 40,000 words at age 40.
This relationship is a **linear outcome**, described by the linear equation

\[y = at + b, \]

where \(a \) represents a constant average gain of 730 words per year (approximately 2 words per day), and \(b \) is a given fixed value of 9620 words (necessary to produce the estimated starting value of 14,000 words at age 6). The rate of gain that underlies this relationship can be described by the following **linear dynamic equation** (also known as an evolution equation):

\[\frac{dy}{dt} = a. \]

The term \(\frac{dy}{dt} \) refers to the range of change in \(y \) per unit of change in \(t \). This dynamic equation can be used to calculate amount of change in vocabulary on any given application. In contrast with the dynamic equations that we will consider later, the amount of change per unit time is constant. That is, we always add 730 words per year, regardless of the amount of vocabulary that is available before the equation is applied. The flat line in Figure 2b illustrates this rather uninteresting dynamic relationship.

Figure 3a illustrates a rather different situation, a nonlinear relationship between vocabulary and age in the earliest stages of language development. In this case, \(t \) represents age from 10 to 24 months, while \(y \) represents number of words in the child's expressive vocabulary. This graph is an idealization, but it is patterned after vocabulary growth functions that have been observed in diary studies of real live human children (e.g., Dromi, 1987; Nelson, 1973). In contrast with the graph of adult vocabulary growth in Fig. 2a, the infant graph illustrates a **nonlinear outcome**. It appears from a cursory examination of this pattern that there is a marked acceleration somewhere around the 50-word level in the rate at which new words are added. For example, the child learns only 24 new words be-

\[^2 \text{Word learning is the simplest system that we could think of to make a succession of points about the nature of growth. But all of our assumptions are overly simple, and all of them are based on crude estimates of vocabulary size at any given point in development. In fact, there are good reasons why better statistics on child and adult vocabulary are still unavailable. For one thing, there is no theory-neutral way to calculate vocabulary size. How should we count inflected forms (e.g., should "dog" and "dogs" each be listed as separate words)? How about derived forms (e.g., "govern" vs. "government")? What is the status of compounds (e.g., "watermelon" and "waterlily" are usually counted as single words, but what do we do with "water level" or "water nymph")? A serious treatment of word learning must take problems like these into account. Our purpose here is not to provide a serious solution, but to introduce a class of possible solutions to the dynamics of language learning.} \]
Fig. 2. (a–b) A linear form of change in vocabulary (a) generated by a linear relationship between rate of change and vocabulary size (b).

tween 10 and 14 months, but she learns 328 new words between 20 and 24 months. This nonlinear pattern can be described by the nonlinear equation

\[y = y_0 e^{at - b} \]

Here \(y_0 = 1 \) is the number of words the child knows at \(t_0 = 10 \) months of age (Fenson et al., 1993). The constant \(a \) is called the exponential growth rate (which in this case is 43% per month), and \(e^2 \) is the exponential function. Actually all this function \(e^x \) means is that the constant \(e \) (which is always approximately 2.718) is raised to the power \(x \). For example, \(e^2 \) is the square of \(e \), which is approximately 7.388, etc.

"Burst" patterns like this one have been reported many times in the language acquisition literature. They are common in vocabulary development between 14 and 24 months of age, and similar functions have been reported for aspects of grammatical development between 20 and 36
months of age. How should such "bursts" be interpreted? A number of explanations have been proposed to account for the vocabulary burst. They include "insight" theories (e.g., the child suddenly realized that things have names—Dore, 1974; Baldwin, 1989), theories based on shifts in knowledge (Zelazo & Reznick, 1991; Reznick & Goldfield, 1992), categorization (Gopnik & Meltzoff, 1987), and phonological abilities (Menn, 1971; Plunkett, 1993). Although these theories vary greatly in the causal mechanisms brought to bear on the problem, they all have one thing in common: The proposed cause is located at or slightly before the perceived point of acceleration (i.e., somewhere around 50 words). In a sense, such theories assimilate or reduce the data in Fig. 3a to a pair of linear relationships, illustrated in Fig. 3b, i.e., two linear functions whose cross-point indexes a sudden, discontinuous change in the "rules" that govern vocabulary growth.

However, if the function illustrated in Fig. 3a is accurate, this perceived point of acceleration is really an illusion. Figure 3a is a smoothly accel-
Fig. 3. (a–c) A nonlinear form of change in vocabulary (a) generated by a linear relationship between rate of change and vocabulary size (b), compared with the hypothesized conjunct of linear forms of change postulated in many current theories accounting for the vocabulary burst (c).

...erating function without a single identifiable inflection point and can be generated by a linear dynamic equation of the form

$$\frac{dy}{dt} = ay$$

which tells us that the increase at any given moment is always proportional to total vocabulary size. The term a is no longer a constant number of words (as it was in the previous example), but a constant percentage per unit time (much like a constant interest rate applied to a growing savings account). This linear dynamic relationship is illustrated in Fig. 3c. As van Geert (1991) has argued in a recent paper on the equations that govern developmental functions, we do not need to invoke intervening causes to explain this kind of growth. The real "cause" of the acceleration that we commonly observe between 50 and 100 words may be the
growth equation that started the whole process in the first place, i.e., conditions that have operated from the very beginning of language development. Of course this does not rule out the possibility that other factors intervene along the way. Environmental factors may act to increase or reduce the rate of gain, and endogenous events like the "naming insight" and/or changes in capacity could alter the shape of learning. Our point is, simply, that such factors are not necessary to account for nonlinear patterns of change.

On the other hand, there are excellent reasons to believe that the dynamic equation in Fig. 3c tells only part of the story (see also van Geert, 1991). Let us suppose for a moment that vocabulary growth continued to follow this dynamic function for a few more years. At this rate of growth, our hypothetical child would have a vocabulary of approximately 68,000 words at 3 years of age, 12 million words at 4 years, and 2 billion words by the time she enters kindergarten! Since there are no known cases of this sort, we are forced to one of two conclusions: (1) some exogenous
force intervenes to slow vocabulary growth down, or (2) the initial acceleration and a subsequent deceleration were both prefigured in the original growth equation. To explore the second option, we need to consider nonlinear outcomes that are brought about by nonlinear dynamics.

Figure 4a illustrates a relatively simple nonlinear pattern known as the logistic function. Functions of this kind are quite common in behavioral research, and they are also common in neuroscience (where they can be used to describe the probability of firing for a single neuron or population of neurons, assuming some threshold value). The particular example in Fig. 4a reflects a hypothetical example of vocabulary growth from approximately 10 to 48 months of age. The first part of the graph from 10 to 24 months is almost identical to the growth function in Fig. 3a (although that is difficult to see because of the change in scale). In contrast with the ever-increasing exponential burst in Fig. 3a, Fig. 4a does have a true "inflection point" (half-way up the curve), defined as the point at which the rate of change stops increasing, and starts to slow down. This pattern can be described by the equation
\[y = y_0 e^{at - ta}(1 + y_0/y_{\text{max}}) (e^{at - ta} - 1). \]

Although this is a more complicated equation than the ones we have seen so far, the only new term here (in addition to the ones introduced in the previous example) is the constant parameter \(y_{\text{max}} \), which stands for an estimated upper limit on adult vocabulary of 40,000 words. (We do not have to assume that the child knows this upper limit in advance; instead, the limit might be placed by the available data base or by some fixed memory capacity.) The nonlinear dynamic equation that generates this nonlinear pattern of change is

\[\frac{dy}{dt} = ay - cy^2, \]

where \(c \) is defined as \(ay_{\text{max}} \). This dynamic relationship between rate of growth and the variable undergoing change is illustrated in Fig. 4b. The main thing to notice here is the changing relationship between \(ay \) and \(cy^2 \) which explains why the initial acceleration and subsequent decline in growth are both contained in the same equation. Early in the evolution, say from 10 to 24 months, \(ay \) is much larger than \(cy^2 \), and so the evolution during that period is almost identical to that in Fig. 3a. As time proceeds, and \(y \) increases in size, \(cy^2 \) becomes closer in size to \(ay \). Because the growth rate is defined as the difference between these two terms, the rate of growth approaches zero at the specified vocabulary maximum. In other words, the two different "stages" in development are given by a continuous change in the relative magnitude of these two terms.

This dynamic equation provides a better overall match to the child vocabulary growth data than the exponential in Fig. 3c (i.e., the function that predicts a 2-billion-word vocabulary when the child enrolls in kindergarten . . .). However, it is still grossly inadequate. In Fig. 4a, our hypothetical child is already close to adult vocabulary levels at 4 years of age—unlikely under any scenario. In other words, as van Geert also concludes in his analysis of lexical growth patterns, the symmetrical properties of the logistic function cannot capture the apparent asymmetries in rate of growth evidenced across the human life time.

There are two ways out of this dilemma: Abandon our efforts to achieve a unitary model of growth in this behavioral domain or adopt a more complex model. We suspect that we will ultimately have to follow both alternatives. The particular example of nonlinear dynamics illustrated here is only one of a huge class of possible nonlinear dynamic systems. This class includes an exotic and celebrated form of nonlinearity called chaos, famous because it seems to elude our understanding altogether, being (by definition) completely deterministic but completely unpredictable. The behavior of nonlinear systems is difficult to predict because they have a property called sensitivity to initial conditions. In particular,
Fig. 4. A nonlinear form of change in vocabulary (a) generated by a nonlinear relationship between rate of change and vocabulary size (b).

because there is a nonlinear relationship between rate of change and the variable that is undergoing change, the outcomes that we ultimately observe are not proportional to the quantities that we start with. A very small difference in the starting points of two otherwise similar systems can lead (in some cases) to wildly different results. In principle, all these systems are deterministic; that is, the outcome could be determined if one knew the equations that govern growth together with all possible details regarding the input, out to an extremely large number of decimal places. In practice, it is hard to know how many decimal places to go out to before we can relax (and in a truly chaotic system, the universe does not contain enough decimal places). For this and other reasons, nonlinear dynamic systems constitute a new frontier in the natural sciences. For those of us who are interested in applying such systems to problems in behavioral development, this is both the good news and the bad news. The good news is that nonlinear dynamic systems are capable of a vast
range of surprising behaviors. The bad news is that no one really understands how they work or what their limits are.

Whether or not we are comfortable with this state of affairs, it is likely that the field of child language will be forced to abandon many of the linear assumptions that underlie current work. We have already shown how linear assumptions may have distorted our understanding of monotonic phenomena like the vocabulary burst. In the same vein, linear assumptions may have distorted our understanding of nonmonotonic phenomena like the famous "U-shaped curve" in the development of grammatical morphology. Many developmental psycholinguists have assumed that the sudden appearance of overgeneralization errors (e.g., from "came" to "comed") reflects the sudden appearance of a new mechanism for language learning and language use, a rule-based mechanism that is qualitatively different from the rote and/or associative mechanism responsible for early learning of irregular verb forms. The original statement of this argument goes back to Berko (1958); its modern reincarnation can
be found in Pinker (1991, 1992). It is hopefully clear by now why this assumption is unwarranted. Discontinuous outcomes can emerge from continuous change within a single system. Under a continuous increase in temperature, ice can turn to water and water into steam. By the same token, continuous learning and/or continuous growth can "bootstrap" the child into a succession of qualitatively different problems and qualitatively different behavioral solutions to those problems (for further discussion of this point, see Bates, Thal, & Marchman, 1991).

One of the reasons why connectionist simulations of past-tense learning have attracted so much attention lies in their ability to produce such discontinuous outcomes from continuous change, an ability that is based in large measure on the nonlinear properties of multilayered neural nets (Hertz, Krogh, & Palmer, 1991). Like human children, these systems display progress followed by backsliding, errors that appear and then disappear, change that "takes off" in unexpected ways that were not predictable from the initial conditions used to set up the simulation. If it is the case that language learning in human beings reflects the operation of a nonlinear dynamic system, then we have our work cut out for us. Fortunately, connectionist models provide some of the tools that we will need to explore this possibility.

(5) NEURAL CORRELATES OF LANGUAGE LEARNING

We are now 3 years into what Congress has, in its infinite wisdom, declared to be the Decade of the Brain. Although the implications of this declaration remain to be seen, it is the case (with or without congressional help) that we are in the midst of an exciting new era of research on the nature and development of the human brain. We will not wax too long or eloquent on this point (for readings on brain development and cognition, see Johnson, 1993), except to stress that some very exciting opportunities await us in research on the neural correlates of normal and abnormal language development.

First, recent findings in developmental neurobiology using animal models have demonstrated far more plasticity in early brain development than we ever could have imagined (O'Leary, Stanfield, & Cowan, 1981; O'Leary & Cowan, 1984; Merzenich, Nelson, Stryker, Cynader, Schoppman, & Zook, 1984; Merzenich, Recanzone, Jenkins, Allard, & Nudo, 1988; Sur, Garraghty, & Roe, 1988; Sur, Pallas, & Roe, 1990; Frost & Schneider, 1979; Frost, 1989). Neuroscientists have literally "rewired" the developing brain in various species, demonstrating (for example) the establishment of somatosensory maps in visual cortex, the establishment of visual maps in somatosensory or auditory cortex, and so on. It appears as though the structuring effects of experience on the brain are far more massive than previously believed. These findings complement research
on normal brain development by Rakic, Bourgeois, Eckenhoff, Zecevic, and Goldman-Rakic (1986); Huttenlocher (1979); Huttenlocher, de Courten, Garey, and Van der Loos (1982); Huttenlocher and de Courten (1987); Changeux (1985); and Changeux and Dehaene (1989), showing a huge overproduction of neurons (prenatally) and connectivity (postnatally). These investigators have concluded that the bulk of postnatal brain development can be characterized by so-called subtractive or regressive events, the loss of neurons and retraction of connections. Furthermore, a primary mechanism governing this subtractive process is competition: Connections that win are maintained and (perhaps) expanded (in second- and third-order synaptic branching), while connections that lose are eliminated. The basic message appears to be that experience plays a major role in the creation of brain structure. Indeed, it has been suggested that experience literally carves and remodels that brain into its adult form. These results may help to explain the extraordinary plasticity for language development observed in children with early focal brain injury (Marchman, Miller, & Bates, 1991; Thal, Marchman, Stiles, Aram, Trauner, Nass, & Bates, 1991; Aram, 1988; Riva & Cazzaniga, 1986; Vargha-Khadem, O’Gorman, & Watters, 1985). Variations in this process may also help us to understand milestones and variations in language development in normal children (Bates, Thal, & Janowsky, 1992).

Second, researchers have now begun to apply new techniques for neural imaging to the study of human brain development, including Magnetic Resonance Imaging (Jernigan & Bellugi, 1990; Jernigan, Hesslink, Sowell, & Tallal, 1991; Jernigan, Trauner, Hesslink, & Tallal, 1991), and Positron Emission Tomography (Chugani, Phelps, & Mazziotta, 1987; Chugani & Phelps, 1991). However, use of these techniques with children will continue to be limited by ethical constraints (e.g., PET involves injecting a radioactively tagged substance into children in critical phases of development; MRI is noninvasive, but often requires use of sedation with very young children). For this reason, we suspect that many of our greatest insights will come from less direct but safer techniques for functional brain-imaging through electrophysiological recording, with particular emphasis on Event-Related Brain Potentials or ERP—(Molfese, 1990; Mills, Coffey, & Neville, 1993, 1994; Kurtzberg, Hilpert, Kreuzer, & Vaughn, 1984; Kurtzberg, 1985; Kurtzberg & Vaughn, 1985; Novak, Kurtzberg, Kreuzer, and Vaughn, 1989). For example, recent studies by Mills, Neville, and their colleagues using this technique have demonstrated systematic changes in brain organization that are associated with major milestones in language development (e.g., the onset of word comprehension, and the later onset of word production). In addition, they have uncovered some electrophysiological correlates of individual differences in rate of language learning among normally developing children.
(e.g., "early talkers" vs "late talkers"), together with some important indices of reorganization in children with early focal brain injury. Some critics have argued that electrophysiological techniques are limited in value, because we know so little about the neural generators in the brain that are responsible for electrical potentials over the scalp. However, a number of studies are currently underway that combine the fine-grained temporal resolution of electrical recording over the scalp with the spatial resolution offered by MRI, PET, and another electrophysiological technique called MEG (magnetoencephalography). By combining these techniques within a single study, some neuroscientists are convinced that we will find the neural generators for the ERP. If we can indeed "break the code" that governs generation of scalp potentials, then we will have a safe and relatively inexpensive noninvasive technique that can be used in broad-ranging studies of brain development and cognition, including studies of brain organization for language.

(6) SOCIAL FACTORS IN LANGUAGE LEARNING

Our emphasis so far has been on "high technology": new mathematical formalisms for the study of learning, computational techniques for the analysis of linguistic data, and breakthroughs in structural and functional brain imaging. Has the heart and soul gone out of research on language learning? Will the field be taken over by engineers and computer scientists: What hope is there for the humble behavioral scientist (linguist or psycholinguist) armed with nothing more than a portable tape recorder and a pencil? We are asked these questions, in all sincerity (usually over drinks), by child language researchers who fear that a field low in technology but rich in ideas is about to disappear.

Most child language research relies heavily on traditional observational and experimental techniques for the study of behavior. And many child language researchers (including the first author) suffer from some form of math anxiety and machine phobia. Why, then, should one be optimistic about this Brave New World? Some friends ask whether we have abandoned completely the study of language in a social context (cf. Bates, 1976), and others raise the spectre of "mechanistic thinking" (including one former professor who startled E.B. with the complaint "You are just as bad as the Chomskians, with all their gratuitous love of formalism").

Our answer is this: If one sincerely believes in the social-experimental bases of language and change, then there is no reason to fear quantification or precision. Indeed, the increased precision offered by these new models may make it impossible to hide from the contributions of social and contextual factors. To illustrate that point, let us close with our favorite connectionist anecdote.

Two years ago, a colleague of ours who has made great progress in the
application of neural networks to language learning decided to go beyond simulations using artificial data. He accessed the Child Language Data Exchange System to obtain transcripts of the language corpora for Roger Brown’s famous subject Adam, and set his neural model to work on the input strings provided by Adam’s mother. Needless to say, this effort failed. But it failed in a very instructive way. For example, the system crashed entirely (driven into all kinds of spurious solutions) faced with an input string in which Adam’s mother interrupted her speech to Adam, called out a question to another adult in the kitchen, and went to answer the phone. As our colleague put it “Adam knows something that my network does not know!” For one thing, the network did not know that the other had just gone to answer the phone and that the input string she began before she was interrupted really “doesn’t count.”

There is a lot that could be said here about the constraints and biases that children bring to bear on language learning (Gallistel, 1990), about “scaffolding” (Rogoff, 1989; Bruner, 1985), about the many ways that parent and child work together to determine the shape and nature of the input that “counts.” This lesson applies not only to the content of research on language development, but also to the research process itself. In the future, practitioners of high technology and developmental researchers with a wealth of knowledge about real child language will need to “scaffold” one another, pushing the frontiers of our field forward in ways that neither could achieve by acting alone. This is the real promise of research on language development in the coming decade.

REFERENCES

Received: June 3, 1992.