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EDITOR’'SNOTE

This is the fourth newdletter of the CENTER FOR RESEARCH IN LANGUAGE. CRL isaresearch center at
the University of California, San Diego which unites the efforts of researchers in various disciplines,
including Linguistics, Psychology, Computer Science, Artificial Intelligence, Communication, Sociology,
and Philosophy, all of whom share an interest in language. We are eager to hear from friends and col-
leagues from other institutions and accept short papers (1 - 10 pages, preferably sent over email) from time
to time. Correspondence may be forwarded to the following address.

Teenie Matlock, Editor CRL Newsletter
Center for Research in Language, C-008
University of California, San Diego 92093
Telephone: (619) 534-2536

Email: crl @ amos.ling.ucsd.edu
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TALKSAND EVENTS

13th Annual Meeting of the Society for Philosophy and Psychology
June 21-23, 1987 at UCSD
For program information contact:

William Bechtel (SPP Program Chairman)
Philosophy Department, Georgia State University
Atlanta Georgia 30303-3083  (404)-658-2277

bitnet address: psuvax! phlpwhb%GSUMV S1.BITNET

| EEE First Annual International Conference on Neural Networks
June 21-24, 1987 at UCSD
For registration information contact:

Nomi Feldman (Conference Coordinator)
3770 Tansy Street

San Diego, CA 92121

(619) 453-6222

COGNITIVE SEMANTICSWORKSHOP REPORT

A Workshop in Cognitive Semantics was held at UCSD on May 22-24 under the auspices of the
CRL and the Department of Linguistics. Faculty and graduate students from UCSD, UC Berkeley, and
several other institutions were invited as participants. The workshop afforded a good appreciation of the
diversity of current research in this new and vital area of investigation. The papers included: Ron Lan-
gacker (UCSD) 'Overview’; Eve Sweetser (UCB) 'The Mind-Body Metaphor in Polysemy and Historical
Semantic Change'; Scott DelLancey (UCSD, U. of Oregon) 'Lhasa Tibetan Clause Organization and the
Semantic Analysis of Event Structure’; Len Talmy (UCB) 'How Language Structures its Concepts. The
Role of Grammar’; George Lakoff (UCB) ’Connectionism and Cognitive Linguistics'; Steve Poteet
(UCSD) ’"Locative Sources for Cognitive and Social Relation Marking Prepositions in Mandarin’; Mike
Lee (USC) 'The Cognitive History of Classifier Systems’; Kiki Nikiforidou (UCB) ' The Meanings of the
Genitive: A Case Study in Semantic Structure and Semantic Change’; Sue Lindner (Rational) and Sally
Rice (UCSD) 'What's the Preposition up to in English VPPs and VPCs? ; Michele Emanatian (UCB) 'The
Lexicalization of Motion in Chagga'; Peter Lutzeier (UCSD, Freie Universitdt Berlin) ’Interna Dynam-
ism: The System of Temporal Conjunctions in German as a Case Study’; Sherman Wilcox (U. of New
Mexico) ’lconicity and ASL: A View from Cognitive Grammar’; Larry Gorbet (U. of New Mexico)
"Towards Frogs in Space: How the Composition of Complex Expressions Affects Assertion’; Ricardo Mal-
donado (UCSD) 'Accidental Reflexives in Spanish’; Ken Cook (UCSD) 'Terminal Prominence’; Dave
Zubin (SUNY Buffalo) 'The Analysis of Spatial Terms and the Experiential Nature of Categorization’;
Walter Read (UCLA, CSU Fresno) 'Al and Semantics'; Claudia Brugman (UCB) ' Construction Semantics
and Constructional Polysemy’.



* * * RECENT DISSERTATIONS * * *

-Kerry W. Kilborn, Psychology Department, UCSD
Title: Sentence Processing in a Second Language:
Seeking a Performance Definition of Fluency.

-Beverly Wulfeck, Psychology Department, UCSD
Title: Sengitivity to Grammaticality in Agrammatic Aphasia:
Processing of Word Order and Agreement Violations,

CRL TECHNICAL REPORT
The following TR is now available:

Elman, J. and Zipser, D. (1987). Learning the hidden
structure of speech. TR 8701, UCSD.

JOB ANNOUNCEMENT

The CENTER FOR RESEARCH IN LANGUAGE, University of California, San Diego, is seeking
candidates for a position as an Assistant Research Cognitive Scientist to assist in developing a real-time
implementation of a Parallel Distributed Processing system for speech recognition. A strong background in
digital signal processing is required. Experience with speech is preferred. Candidates should have an
interest in parallel processing, artificial neural networks and cognitive science. Knowledge of the UNIX
o/s, OCCAM programming language and Transputer are desirable. Candidates should have the Ph.D. in
either EE, CS, Cognitive Science or Linguistics, and arecord of research as evidenced by publication.

Salary related to academic rank and step within the established schedule of the University of California,
San Diego.

Send CV, including a statement of research interests, reprints of representative publications and names of
three references by July 30, 1987 to Jan Corte, Center for Research in Language, C-008, University of Cal-
ifornia, San Diego, La Jolla, California 92093. EOAA Employer.



Toward Connectionist Semantics

Garrison W. Cottrell*
Institute for Cognitive Science
University of California at San Diego

Introduction

Much of the study of language has centered around the study of syntax, to the detriment of semantics
and pragmatics. Part of the reason for this may be akin to the motivation of the besotted gentleman on his
hands and knees beneath a streetlamp, who, when queried as to why he is looking on the sidewalk for the
keys he lost in the alley, replies: "Because the light is better here!” | believe it is time to start mucking
about in the alley; the keys are there. | also think we have a new flashlight: Parallel Distributed

Processing?. PDP mechanisms allow us to build machines whose fundamental operations include best fit
search, constraint relaxation and automatic generalization. These are useful properties for processing
language. | think the application of these models to NLP will change our view of what constitutes
"semantics’. | will argue that in order to deal with meaning seriously, we have to move beyond the folk-
psychological level of symbols, and represent the microstructure of symbols. This is more than a
granularity issue. It also has to do with the grounding of meaning in perception. It is on the level of
microfeatures that | believe this grounding occurs, and PDP gives us a way to express this interface
between language and perception.

My discussion of these issues will take the following course®. First | describe my previous work on
word sense disambiguation in a PDP framework as a springboard for the rest of the discussion, and to give
a sense of how lexical semantics might fit into an overall parsing model. Next | motivate a new model of
word meanings through an example. | try to show that PDP has a natural way of expressing these
meanings, and | give a sketch of how connectionist semantics could be learned. Finally, | briefly discuss
metaphor.

Word sense disambiguation

One of the fundamental problems of natural language processing is word sense disambiguation.
Determining the correct sense of a word for a particular use involves the interaction of many sources of
knowledge: syntactic, semantic and pragmatic (i.e., "everything else"). In previous work (Cottrell, 1985) |
have shown how word sense disambiguation can be modeled as a constraint relaxation process between
competing hypotheses instantiated as nodes in a network representing linguistic knowledge. The
representation is one that | have fancifully called proclarative: disambiguation happens as the result of
activation spreading through a knowledge base where constraints between hypotheses are represented by
positive and negative links between them. Figure 1 shows the basic structure of the model. The model
operates as follows: First, words activate al of their lexical entries. These, in turn, activate syntactic and
semantic (case) structures, which represent relations between word senses. It is feedback from these
developing representations that provides support for the correct meanings and syntactic classes of the
words. At the same time, bindings of constituents to roles in both syntax and semantics are mutually
constraining one another to decide such things as prepositional phrase attachment. Thus parsing into a case
structure is modeled as a three way constraint relaxation between the lexica entries of the words, the
possible syntactic representations, and the possible semantic relations. Syntactic and semantic information
are accessed in parallel, and operate simultaneously to determine the correct parse. Thiswas shown to be a
useful model of the human disambiguation process, as evidenced by explanations of various
psycholinguistic and neurolinguistic results.

One of the major weaknesses of that model was the representation of "meaning”. Each meaning of a
word is represented by a unit with an "awkward lexeme" (Wilks, 1976) asalabel. Certainly, the label on a

1 would like to thank Mike Mozer, Harold Pashler, and Dave Rumelhart for helpful comments on this paper. Remaining errors
in judgement are mine. This paper is anotational variant of (Cottrell, 1987)

2| will assume familiarity with the connectionist, or PDP paradigm. The best introduction is Rumelhart and McClelland (1986).
31 will restrict myself hereto lexical semantics. The generalization to logical form isleft as an exercise for the reader.
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Figure 1. Sources of knowledge and constraint paths for disambiguation.

node is not important; it is the way the node connects up to other nodes that determine its relationship to
other "meanings’. But | think thisis a general failing of amost al NLP programs currently in existence:
the meaning of aword is best represented not as a symbol, but as an aggregate of connected microfeatures.
I will next try to show why.

What is meaning? (A thought experiment)

It has been said that all words are polysemous to a degree. Let’s take a fairly safe example: truck.
This seems hardly polysemous, but it turns out we can bend the meaning, at least the image formed, in
fairly continuous ways. Consider Billy picked up the truck. If you are like me, you get a picture of a
small, probably plastic truck. In asymbolic system we might have arule that if ausualy large object isthe
object of a picking up action, then we should "toy-ify" it, either looking up the entry for "toy truck" or by
applying a "toyification" transformation to the representation we had already retrieved: it weighs less, it is
much smaller, it is composed of plastic. Of course, in Superman picked up the truck, we have an
exception to the rule. And in Bobby picked up the toy gun, the application of the toy-ifying rule would
need to be modified so that the size is not reduced. One can imagine that the list of rules and their
application criteria might get a bit unwieldy.

One answer to thisis, "Yes, the world is complicated." The problem is that this is not an isolated
phenomenon. Rather, it pervades our conceptual landscape. The concepts that people use are not fixed
entities, nor are they entities that vary discretely along a small number of dimensions. They covary in a
continuous way. In Tommy lugged the truck up the hill, we imagine a heavier toy truck than the one Billy
picked up, but alighter one than Superman did. It might even be the same truck - Billy picked up the truck
and handed it to Tommy. Tommy lugged it up the hill." In this case it is Tommy that we imagine is smaller
than Billy! Thus the interpretation we derive of the words in a sentence is the result of constraints between
the meanings of the individual words, as well as the usual list: the structure of the sentence, the context in
which it is spoken, the relationship between the speaker and the hearer, the shared knowledge, etc. People
are very good at tasks like this that involve the application of multiple, smultaneous constraints. | claim
that the "rules" that | attempted to describe above can emerge from the regularities of interaction among the
internal structures of the concepts themselves, rather than an application of explicit rules to atomic
concepts®. There is no reason that this could not be implemented in a "symbolic" system that has a
constraint propagation mechanism, and continuous-valued levels of properties. The problem is that the

modification would alter it so radically that we might as well have started with a connectionist model®.

A modest proposal

In this section | will draw on previous work of others to lay out how a connectionist model can
represent the kind of meanings that | think our experiment with truck point to. The basic idea is that

4l am not claiming these are simply first order interactions; relations between feature clusters also need to be captured.

SAnother reason for starting with a connectionist model is the existence of powerful learning algorithms that can derive con-
straints between features, as we will see below.



meanings are connectionist schemata. These are assumed to be embedded in a system like the one |
described above for word sense disambiguation - that is, they are getting input from other schemata
concerned with syntax and larger semantic (case) structures.

Connectionist Schemata. Rumelhart et al. (1986) have demonstrated how a connectionist model of a
schema can do something no implementation has done before: represent smoothly varying constraints
between the dlot fillers. The demonstration model represents the information we have about rooms. Each
unit of the model represents one of forty possible descriptors and contents of a room: size, walls, ceiling,
bathtub, stove, etc. The connection strengths between the units of the schema model were derived from
people's reports of what they expected to find in each kind of room. (The weights were set based on the
conditional probability that one item was reported given another item was reported.) Things that occurred
together often were given a strong positive weight, things that never occurred together were given a
negative weight. For example, every room has walls and a ceiling. These have a strong positive
connection between them because they always co-occur. Probing the model consists of "clamping on"
some units, which then activate positively connected units, and inhibit ones negatively associated with
them. The office schema, for example, can be accessed by probing the model with "desk" (and "ceiling", to
simulate the context is "room"). The result is that units representing the prototype office become activated
- accessing the schema is a matter of pattern completion. This corresponds to filling in the default slotsin
the schema.

The "prototype" rooms are shown to be peaks in a "goodness surface” in the space of unit activations
that reflects the number of constraints satisfied between units of the model and the clamped inputs. The
activation of the unitstravels up the goodness surface to the corner where the elements of the office schema
become activated, maximizing goodness in the conext of the clamped "desk" unit. This type of pattern
completion is atypical way to access information in connectionist models.

An interesting variation on this is when two items are probed together that do not normally co-occur.
For example, if the model is probed with "bed" and "sofa" what results is a large, fancy bedroom with a
fireplace. The goodness space has been warped by these two inputs to form a new stable peak, where the
filler of one of the dots, "size-of-room", has constrained what will be in the contents of the room in a way
that isintuitively pleasing.

It is possible to train a connectionist model to exhibit this blending of meanings, and to do so at the
more micro-level | am advocating for word senses. McClelland & Kawamoto (1986) trained a network to
assign case roles to nouns presented in a matrix as VERB-SUBJ-OBJMODIFIER. The representation of
the input was a set of features for each syntactic slot that were linked to output feature schemata for each
case role. The model was trained on a set of sentences in this format, and then tested on novel sentences.
When given the novel sentence the doll moved, the model interpreted the doll as animate, because of the
shared features between doll and humans and a tendency to assign animacy to agents. Thus, the model
adjusted the meaning to fit the situation. The point is, distributed connectionist representations that
represent symbols such as "doll" as a set of features and constraints can relax those constraints depending
on externa constraints - inputs from combinations of features in the schemata of the other words in the
sentence.

These models assumed the elements of the schemata - the micro-features - were chosen by the
modeler. The next section deals with how the features themselves might be learned, and how they might
be grounded in perceptual processes.

Learning. A problem with any representation of meaning in terms of features is the infinite
regression of features defined in terms of features. What is the basis clause of the inductive process of
building a semantic reprepresentation? | believe that semantics must fundamentally be based in perception
of and interaction with the environment. Powerful new algorithms have been discovered that allow
connectionist networks to develop their own internal representations of their environment. Surprisingly, a
rather useful network is one that does an identity mapping (Figure 2). The network has an input and output
layer connected through a smaller layer of hidden units. By forcing the network to reproduce the input on
the output through this narrow channdl, it has to learn an efficient encoding of the input at the hidden unit
layer. Such networks are self-organizing systems that learn to represent the important features of their
environment.

These systems have been used to encode natural images and speech signals (Cottrell, Munro &
Zipser, 1987; Elman & Zipser, 1986). The internal representations devised by these two systems (auditory
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Figure 2. A network that devel ops an efficient encoding of its environment.
Thejob of the network is to reproduce itsinput on its output.

and visual) can then be the "environment" to a third system which would take into account covariances

between the two of them in a unified abstract encoding of sound and light (see Figure 3)°. By learning
recurrent connections at the coding layers, these become pattern completion devices (auditory and visual
schemata). Now it will only take one of the input modalities to evoke the other. The input of an image
would activate the image encoding, which in turn would partially activate the unified encoding of
associated sounds and images. Thiswill be filled out by pattern completion, enabling the unified encoding
to feed back and activate the encoding of the word associated with theimage. That is, an image will evoke
aword and aword an image. Relating thisto local interest in Cognitive grammar, my take on thisisthat it
could be the computationa basis for Lakoff’s image schemata. While thisis an oversimplified sketch, the
important point is that connectionist systems use a uniform representation medium for both modalities, and
thus afford the modeler an ease of communication between visual, proprioceptive and auditory inputs.
Thus, this approach promises a computationally viable way to ground the infinite regress of meaning in
associations between speech sounds with other perceptual representations generated from interactions with
the environment. While this is just the base case of the induction, it has not been addressed by other
approaches.

Metaphor. A second problem for a model of meaning is the question of metaphor. How could a
connectionist system learn the metaphorical mappings that are such a big part of language? Connectionist
schemata that have many stable states reflecting related meanings may account for much of what we call
"metaphor”. But how might new meanings be learned that are more radical transformations of old ones?
For example, how might we learn that | feel up today means one's mood is elevated? Our identity

mapping networks can be put to good use here in the following way’. Suppose we divide up the input
pattern in Figure 4 into portions corresponding to a function, an input and an output. So the triple (F a b)
represents F(a) = b, and given (F a b) the network produces (F a b). If we add a pattern completion
network on the output layer, we can now give the network (F a*) (where * represents no input) and it will
produce F(a,b), computing that F(a) equals b. In fact, within resource limitations, we can give it F(*,b) or
even *(a,b) and have it invert the mapping or induce the relationship between the arguments. In ambiguous
cases it will produce blends of the possible answers.

000000000 Intermodal encoding
[\
Visual code o0ooooo  0ooooo Auditory code
/ \
Visual Input 0000000000 0000000000 Auditory Input

Figure 3. Automatically learned inter-modal encoding. The inputs and outputs of the network in Figure 2
have been overlain in this diagram, and correspond to the lower left and lower right parts. The final layer is
ajoint encoding of the hidden unit layers of the modality-specific codes.

A similar idea has been independently proposed by Chauvin (1985).
"The following network isimplemented, as McClelland would say, in "hopeware'.



Now, assume that we have enough unitsin the argument positions that we can represent anything we
want, and that we have trained it with functions and arguments from several disparate domains. Suppose
we now give the network a function F with an argument c that is not in the domain of F. One characteristic
of these networks is that they map similar inputs to similar outputs. The degree of overlap between the
features of ¢ and the features of elements of the domain of F will determine the coherency of the mapping.
If cis sufficiently similar to a previously learned input, it will map ¢ to an output similar to the previous
one. It isable to do this because the mapping reflects constraints it has learned between the features of the
inputs and outputs of F. If ¢ is sufficiently different from other inputsit has learned in the domain of F, the

result will be uninterpretable. Somewhere between these two is metaphor?®.

Conclusion

| have attempted to show in this paper that word meanings are more of a moving target than we
would like to think, and that they covary depending on constraints between them. The connectionist
approach to semantics has a natural way to capture these smoothly varying constraints and meanings. |
aso have sketched how these meanings can be grounded in perceptual encodings and how some aspects of
metaphor might be captured in this framework.
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