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Development in a Connectionist Framework:
Rethinking the Nature-Nurture Debate

Kim Plunkett
Oxford University

A Developmental Paradox

Two findings in developmental psychology stand in apparent
conflict. Piaget (1952) has shown that at a certain stage in
development, children will cease in their attempts to reach for
an object when it is partially or fully covered by an occluder.
This finding is observed in children up to the age of about 6
months and is interpreted to indicate that the object concept is
not well-established in early infancy. The object
representations that are necessary to motivate reaching and
grasping behavior are absent. In contrast, other studies have
shown that young infants will express surprise when a
stimulus array is transformed in such a way that the resulting
array does not conform to reasonable expectations. For
example, change in heart rate, sucking or GSR, is observed
when an object, previously visible, fails to block the path of a
moving drawbridge or a locomotive fails to reappear from a
tunnel, or has changed colour when it reappears (Baillargeon,
1993; Spelke, 1994). These results are interpreted as
indicating that important representations of object properties
such as form, shape and the capacity to block the movement
of other objects are already in place by 4 months of age. The
conflict in these findings can be stated as follows: Why
should the infant cease to reach for a partially or fully
concealed object when it already controls representational
characteristics of objects that confirm the stability of object
properties over time, and that predict the interaction of those
represented properties with objects that are visible in the
perceptual array?

One answer to this conflict is that Piaget grossly
underestimated young children’s ability to retrieve hidden
objects. However, this answer is no resolution to the conflict:
Piaget’s findings are robust. Alternatively, one might question
Piaget’s interpretation of his results. Young infants know a lot
about the permanent properties of objects but recruiting object
representations in the service of a reaching task requires
additional sensorimotor skills which have little to do with the
infant’s understanding of the permanence of objects. Again,
this response must be rejected. Young infants who are in full
command of the skill to reach and grasp a visible object still
fail to retrieve an object which is partially or fully concealed
(von Hofsten, 1989). Motor skills are not the culprit here. The
capacity to relate object knowledge to other domains seems to

be an important part of object knowledge itself. Object
knowledge has to be accessed and exercised.

A Resolution

A resolution of the conflict can be found in considering some
fundamental differences in the nature of the two types of task
that infants are required to perform. In experiments that
measure “surprise” reactions to unusual object
transformations such as failure to reappear from behind an
occluder, the infant is treated as a passive observer
(Baillargeon, 1993). In essence, the infant is evaluated for its
expectations concerning the future state of a stimulus array.
Failure of expectation elicits surprise. In the Piagetian task,
the infant is required to actively transform the stimulus array.
To achieve this, not only must the infant know where the
object is but she must be able to coordinate that information
with knowledge about the object’s identity—typically, the
infant reaches for objects she wants. We suppose that this
coordination is relatively easy for visible objects, because
actions are supported by externally available cues. However,
when the object is out of sight, the child has to rely on internal
representations of the object’s identity and position. We
assume that the internal representations for object position
and identity develop separately. This assumption is motivated
by recent neurological evidence that spatial and featural
information is processed in separate channels in the human
brain—the so-called ‘what’ and ‘where’ channels
(Ungerlieder & Mishkin 1982). In principle, the child could
demonstrate knowledge of an object’s position without
demonstrating knowledge about its identity, or vice versa.
Surprise reactions might be triggered by failure of infant
expectations within either of these domains. For example, an
object may suddenly change its featural properties or fail to
appear in a predicted position. Internal representations are
particularly important when the object is out of sight. Hence,
we might expect infants to have greater difficulty performing
tasks that involve the coordination of spatial and featural
representations—such as reaching for hidden objects—when
these representations are only partially developed.

Building a model

The resolution outlined in the previous section constitutes a
theory about the origins of infants’ surprise reactions to
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objects’ properties (spatial or featural) which do not conform
to expectations and attempts to explain why these surprise
reactions precede the ability to reach for hidden objects even
though they possess the motor skills to do so.Mareschal,
Plunkett & Harris (1995) have constructed a computational
model that implements the ideas outlined in this theory. The
model consist of a complex neural network that processes a
visual image of an object that can move across a flat plane.
Different types of objects distinguished by a small number of
features appear on the plane one at a time. These objects may
or may not disappear behind an occluder. All objects move
with a constant velocity so that if one disappears behind an
occluder, it will eventually reappear on the other side. Object
velocities can vary from one presentation to the next.

The network is given two tasks. First, it must learn to predict
the next position of the moving object, including its position
when hidden behind an occluder. Second, the network must
learn to initiate a motor response to reach for an object, both
when visible and when hidden. The network is endowed with
several information processing capacities that enable it fulfil
these tasks. The image of the object moving across the plane
is processed by two separate modules. One module learns to
form a spatially invariant representation of the object so that it
can recognise its identity irrespective of its position on the
plane (Foldiak 1991). The second module learns to keep track
of the object but loses all information about the object’s
identity (Ungerlieder & Mishkin 1982). This second module

does all the work that is required to predict the position of the
moving object. However, in order to reach for an object, the
network needs to integrate information about the object’s
identity and its position. Both modules are required for this
task. Therefore, the ability to reach can be impeded either
because the representations of identity and position are not
sufficiently developed or because the network has not yet
managed to properly integrate these representations in the
service of reaching.

Given the additional task demands imposed on the network
for reaching it would seem relatively unsurprising to discover
that the network learns to track objects before it learns to
reach for them. The crucial test of the model is whether it is
able to make the correct predictions about the late onset of
reaching for hidden objects relative to visible objects. In fact,
the model makes the right predictions for the order of mastery
in tracking and reaching for visible and hidden objects. It
quickly learns to track and reach for visible objects, tracking
being slightly more precocious than retrieval. Next, the
network learns to track occluded objects as its internal
representations of position are strengthened and it is able to
“keep track” of the object in the absence of perceptual input.
However, the ability to track hidden objects together with the
already mastered ability to reach for visible objects does not
guarantee mastery of reaching for hidden objects. The internal
representations that control the integration of spatial and

100 Visual Memory Cells

Input Retina
(4x25 grid with 4 feature detector units per grid cell )

100 Outputs100 Outputs
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Figure 1:  The modular neural network (Mareschal et al., 1995) used to track and initiate reaching responses for visible and
hidden objects. An object recognition network and a visual tracking network process information from an input retina. The object
recognition network learns spatially invariant representations of the objects that move around the retina. The visual tracking
network learns to predict the next position of the object on the retina. The retrieval response network learns to integrate
information from the other two modules in order to initiate a reaching response. The complete system succeeds in tracking visible
objects before it can predict the reappearance of hidden objects. It also succeeds in initiating a reaching response for visible
objects before it learns to reach for hidden objects.
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featural information require further development before this
ability is mastered.

Evaluating the Model

Notice how this modelling endeavour provides a working
implementation of a set of principles that constitute a theory
about how infants learn to track and reach for visible and
hidden objects. It identifies a set of tasks that the model must
perform and the information processing capacities required to
perform those tasks. All these constitute a set of assumptions
that are not explained by the model. However, given these
assumptions, the model is able to make correct predictions
about the order of mastery of the different tasks. The model
implements a coherent and accurate (not necessarily true—the
assumptions might be wrong) theory. However, this model
just like any other has a number of free parameters which the
modeller may ‘tweak’ in order to achieve the appropriate
predictions. It is necessary to derive some novel predictions
which can be tested against new experimental work with
infants, in order to evaluate the generality of the solution the
model has found. This model makes several interesting
predictions including improved tracking skills at higher
velocities and imperviousness to unexpected feature changes
while tracking. The first experimental prediction has been
confirmed (see Mareschal, Harris & Plunkett 1995) while the
second prediction is currently being tested. This instance of
model building and evaluation thus seems to support the
initial insight that children’s object representations develop in
a fragmentary fashion, and that the development of these
fragments of knowledge shape infant performance on various
tasks in line with their manner of involvement in the tasks
concerned.

Connectionist Insights

The model described in the previous section is an example of
a computer simulation that uses the learning capabilities of
artificial neural networks to construct internal representations
of a training environment in the service of several tasks
(reaching and tracking). Neural networks are particularly good
at extracting the statistical regularities of a training
environment and exploiting them in a structured manner to
achieve some goal. They consist of a well-specified
architecture driven by a learning algorithm. The connections
or weights between the simple processing units that make up
the network are gradually adapted over time in response to
localised messages from the learning algorithm. The final
configuration of weights in the network constitutes what it
knows about the environment and the tasks it is required to
perform.

Connectionist modelling provides a flexible approach to
evaluating alternative hypotheses concerning the start state of
the organism (or what we may think of as its innate
endowment), the effective learning environment that the

organism occupies and the nature of the learning procedure
for transforming the organism into its mature state. The start
state of the organism is modelled by the choice of network
architecture and computational properties of the units in the
network. There are a wide range of possibilities that the
developmentalist can choose between. The effective learning
environment is determined by the manner in which the
modeller chooses to define the task for the network. For
example, the modeller must decide upon a representational
format for the pattern of inputs and outputs for the network,
and highlight the manner in which the network samples
patterns from the environment. These decisions constitute
precise hypotheses about the nature of the learning
environment. Finally, the modeller must decide how the
network will learn. Again, a wide variety of learning
algorithms are available to drive weight adaptation in
networks. Any particular connectionist model embodies a set
of decisions governing all of these factors which are crucial
for specifying clearly one’s theory of development. Quite
small changes in one of the choices can have dramatic
changes for the performance of the model—some of them
quite unexpected. Connectionist modelling offers a rich space
for exploring a wide range of developmental hypotheses.

In the remainder of this article I will briefly review some
connectionist modelling work that has explored some
important areas in the hypothesis space of developmental
theories. I aim to underscore four main lessons or insights that
these models have provided:

1. When constructing theories in psychology, we use
behavioural data from experiments or naturalistic observation
as the objects that our explanations must fit. We attempt to
infer underlying mechanisms from overt behaviour.
Connectionist modelling encourages us to be suspicious of the
explanations we propose. Often, networks surprise us with the
simplicity of the solution they discover to apparently complex
tasks—sometimes, leading us to the conclusion that learning
may not be as difficult as we thought.

2. When we see new forms of behaviour emerging in
development, we are tempted to conclude that some radical
change has occurred in the mechanisms governing that
behaviour. Connectionist modelling has shown us that small
and gradual internal changes in an organism can lead to
dramatic non-linearities in its overt behaviour—new
behaviour need not mean new mechanisms.

3. Theories of development are often domain specific.
Behaviours that are discrete and associated with
distinguishable modalities, promote explanations that do not
reach beyond the specifics of those modalities or domains.
These encapsulated accounts often emphasise the
impoverished character of the learning environment and lead
to complex specifications of the organism’s start state.
Connectionist models provide a framework for investigating
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the interaction between modalities and a formalism for
entertaining distributed as well as domain specific accounts of
developmental change. This approach fosters an appreciation
of developing systems in which domain specific
representations emerge from a complex interaction of the
organism’s domain-general learning capacities with a rich
learning environment.

4. Complex problems seem to require complex solutions.
Mastery of higher cognitive processes appears to require the
application of complex learning devices from the very start of
development. Connectionist modelling has shown us that
placing limitations on the processing capacity of developing
systems during early learning can actually enhance their long-
term potential. The ignorance and apparent inadequacies of
the immature organism may, in fact, be highly beneficial for
learning the solutions to complex problems. Small is
beautiful.

Inferring Mechanisms from Behaviour

Children make mistakes. Developmentalists use these
mistakes as clues to discover the nature of the mechanisms
that drive correct performance. For example, in learning the
past tense forms of irregular verbs or plurals of irregular
nouns, English children may sometimes overgeneralise the “-
ed” or “s” suffixes to produce incorrect forms like “hitted” or
“mans”. These errors often occur after the child has already
produced the irregular forms correctly, yielding the well-
known U-shaped profile of development.

A Dual-Mechanism Account

A natural interpretation of this pattern of performance is to
suggest that early in development, the child learns irregular
forms by rote, simply storing in memory the forms that she
hears in the adult language. At a later stage, the child
recognises the regularities inherent in the inflectional system
of English and re-organises her representation of the past
tense or plural system to include a qualitatively new device
that does the work of adding a suffix, obviating the need to
memorise new forms. During this stage, some of the original
irregular forms may get sucked into this new system and
suffer inappropriate generalisation of the regular suffix.
Finally, the child must sort out which forms cannot be
generated with the new rule-based device. They do this by
strengthening their memories for the irregular forms which
can thereby block the application of the regular rule and
eliminate overgeneralisation errors (Pinker & Prince 1988).

This account of the representation and development of past
tense and plural inflections in English assumes that two
qualitatively different types of mechanism are needed to
capture the profile of development in young children—a rote
memory system to deal with the irregular forms and a
symbolic rule system to deal with the rest. The behavioural
dissociation between regular and irregular forms—children
make mistakes on irregular forms but not on regular forms—
make the idea of two separate mechanisms very appealing.
Double dissociations between regular and irregular forms in
disordered populations add to the strength of the claim that
separate mechanisms are responsible for different types of

Output Past Tense

Listing of Exceptions/
Associative Memory Regular Route

Input Stem

Blocking

Figure 2:  The dual-route model for the English past tense (Pinker & Prince 1988). The model involves a symbolic regular route
that is insensitive to the phonological form of the stem and a route for exceptions that is capable of blocking the output from the
regular route. Failure to block the regular route produces the correct output for regular verbs but results in overgeneralisation
errors for irregular verbs. Children must strengthen their representation of irregular past tense forms to promote correct blocking
of the regular route.
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errors: in some language disorders children may preserve
performance on irregular verbs but not on regulars while in
other disorders the opposite pattern is observed.

Although the evidence is consistent with the view that a dual-
route mechanism underlies children’s acquisition of English
inflectional morphology, this is no proof that the theory is
correct. There may be other types of mechanistic explanations
for these patterns of behaviour and development.
Connectionist modelling offers a tool for exploring alternative
developmental hypotheses.

Single-mechanism account

One of the earliest demonstrations of the learning abilities of
neural networks was for English past tense acquisition.
Rumelhart & McClelland (1986) suggested that the source of
children’s errors in learning past tense forms was to be found
in their attempts to systematise the underlying relationship
that holds between the verb’s stem and its past tense form. For
most verbs in English, the sound of the stem does not affect
the past tense form. You just add “ed” on the end. However,
there is a small subset of verbs which exhibit a different
relationship between stem and past tense form. For example,
there is a set of no change verbs where the stem and past tense
forms are identical (hitÆhit). All these verbs end in an
alveolar consonant (/t/ or /d/). Other verbs undergo a
particular type of vowel change (ringÆrang, sing→sang),
apparently triggered by the presence of the rhyme -ing in the
stem. Neural networks are particularly good at picking up on

these types of regularities, so Rumelhart & McClelland
trained a simple network to produce the past tense forms of
verbs when presented with their stems. The details of the
learning procedure and network architecture are not important
here (see Plunkett 1995 for a detailed review of this and
related models).

What is important is to note that Rumelhart & McClelland
were successful in training the network to perform the task
and that en route to learning the correct past tense forms of
English verbs, the network made mistakes that are similar to
the kind of mistakes that children make during the acquisition
of inflectional morphology. Furthermore, the network did not
partition itself into qualitatively distinct devices during the
process of learning—one for regular verbs and one for
irregular verbs. The representation of both verb types seemed
to be distributed throughout the entire matrix of connections
in the network. Nevertheless, a behavioural dissociation
between regular and irregular verbs was observed in the
network. Most of its errors occurred on irregular verbs.

More recently, Marchman (1993) has shown that damage to a
network trained on the past tense problem results in further
dissociations between regular and irregular forms: production
of irregular forms remains intact while production of regular
verbs deteriorates, mimicking patterns of performance
observed in disordered populations. As with the Rumelhart &
McClelland model, the representation of regular and irregular
verbs was distributed throughout the network, i.e., there was

Figure 3:  Network overregularization errors on irregular verbs as found in the Plunkett & Marchman (1993) simulation compared
to those produced by one of 83 children analysed by Marcus, Ullman, Pinker, Hollander, Rosen & Xu (1992). The thick line
indicates the percentage of regular verbs in the child’s/network’s vocabulary at various points in learning. Note the initial period
of error free performance and overall low error rate characteristic of the developmental profiles for the model and child. Plunkett
and Marchman (1993) also demonstrated that the types of errors that occurred in the model closely resembled the types of errors
produced by the children studied by Marcus et al., (1992).
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no evidence of dissociable mechanisms.

As it turns out, there were a lot of fundamental design
problems with the Rumelhart & McClelland model that made
it untenable as a realistic model of children’s acquisition of
the English past tense (Pinker & Prince 1988). Some of these
problems have been fixed, some haven’t (MacWhinney &
Leinbach 1991, Plunkett & Marchman 1991, 1993, Cottrell &
Plunkett 1994). However, the basic insight that the original
model offered still remains: The observation of behavioural
dissociations in some domain of performance does not
necessarily imply the existence of dissociable mechanisms
driving those dissociations in behaviour. Behavioural
dissociations can emerge as the result of subtle differences in
the graded representations constructed by these networks for
different types of tasks.

Of course, just because one can train a network to mimic
children’s performance in learning the past tense of English
verbs, does not mean that children learn them the same way as
the network. The relatively simple learning system that
Rumelhart & McClelland and other researchers have used to
model children’s learning may underestimate the complexity
of the resources that children bring to bare on this problem.
However, the neural network model does show that, in
principle, children could use a relatively simple learning
system to solve this problem. The modelling work has thereby
enriched our understanding of the range and types of
mechanism that might drive development in this domain.

Discontinuities in Development

Developmentalists often interpret discontinuities in behaviour
as manifesting the onset of a new stage or phase of
development (Piaget 1955; Karmiloff-Smith 1979; Siegler
1981). The child’s transition to a new stage of development is
usually construed as the onset of a new mode of operation of
the cognitive system, perhaps as the result of the maturation
of some cognitively relevant neural sub-system. For example,
the vocabulary spurt that often occurs towards the end of the
child’s second year has been explained as the result of an
insight (McShane 1979), in which the child discovers that
objects have names. Early in development, the child lacks the
necessary conceptual machinery to link object names with
their referents. The insight is triggered by a switch that turns
on the naming machine. Similar arguments have been offered
to explain the developmental stages through which children
pass in mastering the object concept, understanding quantity
and logical relations.

It is a reasonable supposition that new behaviours are caused
by new events in the child, just as it is reasonable to
hypothesise that dissociable behaviours imply dissociable
mechanisms. However, connectionism teaches us that new
behaviours can emerge as a result of gradual changes in a
simple learning device. It is well known that the behaviour of

dynamical systems unfolds in a non-linear and unpredictable
fashion (van Geert 1991). Neural networks are themselves
dynamical systems and they exhibit just these non-linear
properties.

Plunkett, Sinha, Møller & Strandsby (1992) trained a neural
network to associate object labels with distinguishable
images. The images formed natural (though overlapping)
categories so that images that looked similar tended to have
similar labels. The network was constructed so that it was
possible to interrogate it about the name of an object when
only given its image (call this production) or the type of
image when only given its name (call this comprehension).
Network performance during training resembled children’s
vocabulary development during their second year. During the
early stages of training, the network was unable to produce
the correct names for most objects—it got a few right but
improvement was slow. However, with no apparent warning,
production of correct names suddenly increased until all the
objects in the network’s training environment were correctly
labelled. In other words, the network went through a
vocabulary spurt. The network showed a similar improvement
of performance for comprehension, except that the vocabulary
spurt for comprehension preceded the productive vocabulary
spurt. Last but not least, the network made a series of under-
and over-extension errors en route to masterful performance
(such as using the word ‘dog’ exclusively for the family pet or
calling all four-legged animals ‘dog’)—a phenomenon
observed in young children using new words (Barrett 1995).

 There are several important issues that this model highlights:
First, the pattern of behaviour exhibited by the model is
highly non-linear despite the fact that the network
architecture and the training environment remain constant
throughout learning. The only changes that occur in the
network are small increments in the connections that
strengthen the association between an image and its
corresponding label. No new mechanisms are needed to
explain the vocabulary spurt. Gradual changes within a single
learning device are, in principle, capable of explaining this
profile of development. McClelland (1989) has made a similar
point in the domain of children’s developing understanding of
weight/distance relations for solving balance beam problems
(Siegler 1981).

Second, the model predicts that comprehension precedes
production. This in itself is not a particularly radical
prediction to make. However, it is an emergent property of the
network that was not “designed in” before the model was
built. More important is the network’s prediction that there
should be a non-linearity in the receptive direction, i.e., a
vocabulary spurt in comprehension. When the model was first
built, there was no indication in the literature as to the
precision of this prediction. The prediction has since been
shown to be correct (Reznick & Goldfield 1992). This model
provides a good example of how a computational model can
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be used not only to evaluate hypotheses about the nature of
the mechanisms underlying some behaviour but also to
generate predictions about the behaviour itself. The ability to
generate novel predictions about behaviour is important in
simulation work as it offers a way to evaluate the generality of
the model in understanding human performance.

The behavioural characteristics of the model are a direct
outcome of the interaction of the linguistic and visual
representations that are used as inputs to the network. The
non-linear profile of development is a direct consequence of
the learning process that sets up the link between the
linguistic and visual inputs and the asymmetries in production
and comprehension can be traced back to the types of
representation used for the two types of input. The essence of
the interactive nature of the learning process is underscored
by the finding that the network learns less quickly when only
required to perform the production task. Learning to
comprehend object labels at the same time as learning to label
objects enables the model to learn the labels faster.

It is important to keep in mind that this simulation is a
considerable simplification of the task that the child has to
master in acquiring a lexicon. Words are not always presented
with their referents and even when they are it is not always
obvious (for a child who doesn’t know the meaning of the
word) what the word refers to. Nevertheless, within the

constraints imposed upon the model, its message is clear:
New behaviours don’t necessarily require new mechanisms
and systems integrating information across modalities can
reveal surprising emergent properties that would not have
been predicted on the basis of exposure to one modality alone.

Small is Beautiful

The immature state of the developing infant places her at a
decided disadvantage in relation to her mature, skilled
caregivers. In contrast, the new born of many other species are
endowed with precocious skills at birth. Why is homo sapiens
not born with a set of cognitive abilities that match the adult
of the species? This state of affairs may seem all the more
strange given that we grow very few new neurons after birth
and even synaptic growth has slowed dramatically by the first
birthday. In fact, there may be important computational
reasons for favouring a relatively immature brain over a
cognitively precocious endowment.

A complete specification of a complex nervous systems
would be expensive in genetic resources. The programming
required to fully determine the precise connectivity of any
adult human brain far exceeds the information capacity in the
human genome. Much current research in brain development
and developmental neurobiology points to a dramatic genetic
underspecification of the detailed architecture of the neural
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Figure 4:  (a) Profile of vocabulary scores typical for many children during their second year—taken from Plunkett (1993). Each
data point indicates the number of different words used by the child during a recording session. It is usually assumed that the
“bumps” in the curve are due to sampling error, though temporary regressions in vocabulary growth cannot be ruled out. The
vocabulary spurt that occurs around 22 months is observed in many children. It usually consists of an increased rate of acquisition
of nominals—specifically names for objects (McShane 1979). (b) Simplified version of the network architecture used in Plunkett,
Sinha, Møller & Strandsby 1992. The image is filtered through a retinal pre-processor prior to presentation to the network. Labels
and images are fed into the network through distinct “sensory” channels. The network is trained to reproduce the input patterns at
the output—a process known as auto-association. Production corresponds to producing a label at the output when only an image
is presented at the input. Comprehension corresponds to producing an image at the output when only a label is presented at the
input.
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pathways that characterise the mature human brain—
particularly in the neo-cortex. So how does the brain know
how to develop? It appears that evolution has hit upon a
solution that involves a trade-off between nature and nurture:
You don’t need to encode in the genes what you can extract
from the environment. In other words, use the environment as
a depository of information that can be relied upon to drive
neural development.

The emergence of neural structures in the brain is entirely
dependent upon a complex interaction of the organism’s
environment and the genes’ capacity to express themselves in
that environment. This evolutionary engineering trick allows
the emergence of a complex neural system with a limited
investment in genetic pre-wiring. Of course, this can have
disastrous consequences when the environment fails to
present itself. On the other hand, the flexibility introduced by
genetic underspecification can also be advantageous when
things go wrong, such as brain damage. Since information is
available in the environment to guide neural development,
other brain regions can take over the task of the damaged
areas. Underspecification and sensitivity to environmental
conditions permit a higher degree of individual specialisation
and adaptation to changing living conditions. Starting off with
a limited amount of built-in knowledge can therefore be an
advantage if you’re prepared to take the chance that you can
find the missing parts elsewhere.

There are, however, other reasons for wanting to start out life
with some limits on processing capacity. It turns out that some
complex problems are easier to solve if you first tackle them
from a over-simplistic point of view. A good example of this
is Elman’s (1993) simulation of grammar learning in a simple
recurrent network. The network’s task was to predict the next
word in a sequence of words representing a large number of
English-like sentences. These sentences included long
distance dependencies, i.e., the sentences included embedded
clauses which separated the main noun from the main verb.
Since English verbs agree with their subject nouns in number,
the network must remember the number of the noun all the
way through the embedded clause until it reaches the main
verb of the sentence. For example, in a sentence like “The boy
with the football that his parents gave him on his birthday
chases the dog”, the network must remember that “boy” and
“chases” agree with each other. This is the type of
phenomenon which Chomsky (1959) used to argue against a
behaviourist approach to language.

Even after a considerable amount of training, the network did
rather poorly at predicting the next word in the sequence—as
do humans (cf. “The boy chased the ???”). However, it did
rather well at predicting the grammatical category of the next
word. For example, it seemed to know when to expect a verb
and when to expect a noun, suggesting that it had learnt some
fundamental facts about the grammar of the language to
which it had been exposed. On the other hand, it did very

badly on long distance agreement phenomena, i.e., it could
not predict correctly which form of the verb should be used
after an intervening embedded clause. This is a serious flaw if
the simulation is taken as a model of grammar learning in
English speakers, since English speakers clearly are able to
master long-distance agreement.

Elman discovered two solutions to this problem: The network
could learn to master long-distance dependencies if the
sentences to which it was initially exposed did not contain any
embedded clauses and consisted only of sequences in which
the main verb and its subject were close together. Once the
network had learnt the principle governing subject-verb
agreement under these simplified circumstances, embedded
clauses could be included in the sentences in the training
environment and the network would eventually master the
long-distance dependencies. Exposure to a limited sample of
the language helped the network to decipher the fundamental
principles of the grammar which it could then apply to the
more complex problem. This demonstration shows how
“motherese” might play a facilitatory role in language
learning (Snow 1977).

Elman’s second solution was to restrict the memory of the
network at the outset of training while keeping the long
distance dependencies in the training sentences. The memory
constraint made if physically impossible for the network to
make predictions about words more than three or four items
downstream. This was achieved by resetting the context units
in the recurrent network and is equivalent to restricting the
system’s working memory. When the network was
constrained in this fashion it was only able to learn the
dependencies between words that occurred close together in a
sentence. However, this limitation had the advantage of
preventing the network from being distracted by the difficult
long-distance dependencies. So again the network was able to
learn some of the fundamental principles of the grammar. The
working memory of the network was then gradually expanded
so that it had an opportunity to learn the long-distance
dependencies. Under these conditions, the network succeeded
in predicting the correct form of verbs after embedded
clauses.

The initial restriction on the system’s working memory turned
out to have beneficial effects: Somewhat surprisingly, the
network succeeded in learning the grammar underlying word
sequences when working memory started off small and was
gradually expanded, while it failed when a full working
memory was made available to the network at the start of
training.

The complementary nature of the solutions that Elman
discovered to the problem of learning long-distance
agreement between verbs and their subjects highlights the
way that nature and nurture can be traded off against one
another in the search for solutions to complex problems. In
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one case, exogenous environmental factors assisted the
network in solving the problem. In the other case, endogenous
processing factors pointed the way to an answer. In both
cases, though, the solution involved an initial simplification in
the service of long term gain. In development, big does not
necessarily mean better.

Current Shortcomings

One trial learning

Children and adults learn quickly. For example, a single
reference to a novel object as a wug may be sufficient for a
child to use and understand the term appropriately on all
subsequent occasions. The connectionist models described in
this paper use learning algorithms which adjust network
connections in a gradualistic, continuous fashion. An outcome
of this computational strategy is that new learning is slow. To
the extent that one trial learning is an important characteristic
of human development, these connectionist models fail to
provide a sufficiently broad basis for characterising the
mechanisms involved in development.

There are two types of solution that connectionist modellers
might adopt in response to these problems. First, it should be
noted that connectionist learning algorithms are not inherently
incapable of one trial learning. The rate of change in the
strength of the connections in a network is determined by a
parameter called the learning rate. Turning up the learning
rate will result in faster learning for a given input pattern. For
example, it is quite easy to demonstrate one trial learning in a

network that exploits a Hebbian learning algorithm. However,
a side effect of using high learning rates is that individual
training patterns can interfere with each other, sometimes
resulting in undesirable instabilities in the network. Of course,
interference is not always undesirable and may help us
explain instabilities in children’s performance such as in their
acquisition of the English past tense. Generally, though,
catastrophic interference between training patterns (when
training on one pattern completely wipes out the traces of a
previously trained pattern) is undesirable. One way to achieve
one trial learning without catastrophic interference is to ensure
that the training patterns are orthogonal (or dissimilar) to each
other. Many models deliberately choose input representations
which fulfil this constraint.

An alternative response to the problem of one trial learning in
networks is to suggest that in some cases it is illusory, i.e.,
when individuals demonstrate what is apparently entirely new
learning they are really exploiting old knowledge in novel
ways. Vygotsky (1962) coined the term the Zone of Proximal
Development to describe areas of learning where change could
occur at a fast pace. Piaget (1952) used the notion of
moderate novelty in a similar fashion. The performance of
networks can change dramatically over just a couple of
learning trials. For example, the Plunkett et al. (1992)
simulation of vocabulary development exhibited rapid
vocabulary growth after a prolonged period of slow lexical
learning. The McClelland (1989) balance beam simulation
shows similar stage-like performance. In both cases, the
networks gradually move towards a state of readiness that
then suddenly catapults them into higher levels of behaviour.
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Figure 5:  (a) A simple recurrent network (Elman 1993) is good at making predictions. A sequence of items is presented to the
network, one at a time. The network makes a prediction about the identity of the next item in the sequence at the output. Context
units provide the network with an internal memory that keeps track of its position in the sequence. If it makes a mistake, the
connections in the network are adapted slightly to reduce the error. (b) When the input consists of a sequence of words that make
up sentences, the network is able to represent the sequences as trajectories through a state space. Small differences in the
trajectories enable the network to keep track of long-distance dependencies
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Some one trial learning may be amenable to this kind of
analysis. It seems unlikely, however, that all one trial learning
is of this kind.

Defining the task and the teacher

Some network models are trained to carry out a specific task
that involve a teacher. For example, the Rumelhart &
McClelland model of past tense acquisition is taught to
produce the past tense form of the verb when exposed to the
corresponding stem. These are called supervised learning
systems. In these simulations, the modeller must justify the
source of the teacher signal and provide a rationale for the
task the network is required to perform. Other models use an
unsupervised form of learning such as auto-association
(Plunkett et al., 1992) or prediction (Elman 1993, Mareschal
et al., 1995). In these models, the teacher signal is the input to
the network itself. In general, connectionist modellers prefer
to use unsupervised learning algorithms. They involve fewer
assumptions about the origins of the signal that drive learning.
However, some tasks seem to be inherently supervised. For
example, learning that a dog is called a dog rather than a chien
involves exposure to appropriate supervision. Nevertheless, it
is unclear how the brain goes about conceptualising the nature
of the task to be performed and identifying the appropriate
supervisory signal. Clearly, different parts of the brain end up
doing different types of things. One of the challenges facing
developmental connectionists is to understand how neural
systems are able to define tasks for themselves in a self-
supervisory fashion and to orchestrate the functioning of
multiple networks in executing complex behaviour.

Biological plausibility

Throughout this paper I have tried to demonstrate how
connectionist models can contribute to our understanding of
the mechanisms underlying linguistic and cognitive
development. Yet the learning algorithms employed in some
of the models described here are assumed to be biologically
implausible. For example, backpropagation (Rumelhart,
Hinton & Williams 1986) involves propagating error
backwards through the layers of nodes in the network.
However, there is no evidence indicating that the brain
propagates error across layers of neurons in this fashion and
some have argued that we are unlikely to find such evidence
(Crick 1989).

There is a considerable literature concerning the appropriate
level of interpretation of neural network simulations (see
Smolensky 1988). For example, it is often argued that
connectionist models can be given an entirely functionalist
interpretation and the question of their relation to biological
neural networks left open for further research. In other words,
the vocabulary of connectionist models can be couched at the
level of software rather than hardware, much like the classical
symbolic approach to cognition. Many developmental
connectionists, however, are concerned to understand the

nature of the relationship between cognitive development and
changes in brain organisation. Connectionist models which
admit the use of biologically implausible components appear
to undermine this attempt to understand the biological basis of
the mechanisms of change.

Given the success of connectionist approaches to modelling
development, it would seem wasteful to throw these
simulations onto the waste bin of the biologically implausible.
Clearly, the most direct way forward is to implement these
models using biologically plausible learning algorithms, such
as Hebbian learning. Nevertheless, there are several reasons
for tentatively accepting the understanding achieved already
through existing models. First, algorithms like
backpropagation may not be that implausible. The neuro-
transmitters that communicate signals across the synaptic gap
are still only poorly understood but it is known that they
communicate information in both directions. Furthermore,
information may be fed backwards through the layered system
of neurons in the cortex—perhaps exploiting the little
understood back projecting neurons in the process.

A second, related proposal assumes that algorithms like
backpropagation belong to a family of learning algorithms, all
of which have similar computational properties and some of
which have biologically plausible implementations. The study
of networks trained with backpropagation could turn out to
yield essentially the same results as networks trained with a
biologically plausible counterpart. There is some support for
this point of view. For example, Plaut & Shallice (1993)
lesioned a connectionist network trained with
backpropagation and compared its behaviour with a lesioned
network originally trained using a contrastive Hebbian
learning algorithm. The pattern of results obtained were
essentially the same for both networks. This result does not
obviate the need to build connectionist models that honour the
rapidly expanding body of knowledge relating to brain
structure and systems. However, it does suggest that given the
rather large pockets of ignorance concerning brain structure
and function, we should be careful about jettisoning our hard
won understanding of computational systems that may yet
prove to be closely related to the biological mechanisms
underlying development.

Some Lessons

A commonly held view has been that connectionism involves
a tabula rasa approach to human learning and development. It
is unlikely that any developmental connectionist has ever
taken this position. Indeed, it is difficult to imagine what a
tabula rasa connectionist network might look like. All the
models reviewed in this article assume a good deal of built-in
architectural and processing constraints to get learning off the
ground. In some cases, such as the Rumelhart & McClelland
model of the past tense, the initial constraints are quite
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modest. In others, such as the Mareschal et al., model of
visual tracking and reaching, the initial architectural and
computational assumptions are rather complex. These
modelling assumptions, together with the task definition,
imply a commitment to the ingredients that are necessary to
get learning off the ground.

What is needed to get learning off the ground? We have seen
that there are two main sources of constraint:

1. The initial state of the organism embodies a variety of
architectural and computational constraints that determine its
information processing capabilities.

2. Environmental structure supports the construction of new
representational capacities not initially present in the
organism itself.

Modelling enables us to determine whether a theory about the
initial state of the organism can make the journey to the
mature state given a well-defined training environment.
Modelling also enables us to investigate the minimal
assumptions about the initial state that are needed to make this
journey.

A minimalist strategy may not necessarily provide an accurate
picture of the actual brain mechanisms that underlie human
development. However, it provides an important potential
contrast to theories of the initial state that are based on
arguments from the poverty of the stimulus. Investigating the
richness of the stimulus shifts the burden away from the need
to postulate highly complex, hard-wired information
processing structures. A minimalist strategy may also provide
valuable insights into alternative solutions that the brain may
adopt when richer resources fail.

Theories about the initial state of the organism cannot be
dissociated from theories about what constitutes the
organism’s effective environment. Release two otherwise
identical organisms in radically different environments and
the representations they learn can be quite disparate.
Connectionist modelling offers an invaluable tool for
investigating these differences as well as examining the
necessary conditions that permit the development of the
emergent representations that we all share.
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