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Connectionist Modeling of the Fast Mapping
Phenomenon

Jeanne Milostan
Computer Sceince and Engineering, UCSD

1 Introduction

The average child learns some 14,000 words before
the age of 6, which represents the daunting task of
acquiring 9 new words per day, or about one each
waking hour [2]. Researchers examining the process
by which this is accomplished have time and again
encountered an interesting effect: often the child can
acquire a new word from only one or a small number
of exposures to that word.  Susan Carey has dubbed
this phenomenon "fast mapping."

In this paper we examine the research which has been
done on the manifestation of fast mapping in children
and explore how this may be explained in terms of a
general cognitive model of language acquisition.  We
then examine a number of basic and advanced
connectionist models and systems and weigh how
each stands in relation to describing and explaining
the fast mapping behavior.  We then speculate on
what is missing from the constellation of models
available and propose directions for future research in
this area.

2 Fast Mapping

2.1 Empirical Demonstrations

Susan Carey [2] began by asking the question "What
is learned when a word is added to a child's
vocabulary?  Where does the process of word
learning begin?"   In her study, she examined the
preschool child's limits on word learning capacity.
The study tested the acquisition of a novel word
representing a color -- chromium.  After
demonstrating that none of the children in the study
(age 3 to 4) had a separate name for the color olive
(each identified it as green or brown), the
experimenter presented the word chromium to each
child in the context of a task request: "Please hand
me the chromium cup; not the red one, the chromium
one" where the choice was between one red cup and
one otherwise  identical olive (chromium) cup.  Carey
found that given only one exposure to the color
name, upon comprehension testing one week later 9
of the 14 subjects successfully identified either an
olive or a green color chip when asked to point to the
chromium one.  Additionally, during a production test
6 weeks later, 8 of the 14 subjects answered
differently when asked to name the color chip than
they had before the experiment began.  That is, where
they had  originally named the chip green or brown,

they now said they didn't know the name or used
another unstable color referent from their vocabulary,
thus indicating that they had learned and retained the
knowledge that olive has its own color name.

Additionally, Carey found that the children who
learned the name after the brief exposure could take
two different tacks.  For some, the False-Synonym
group, chromium was used as another word for green.
Other children adopted the Odd-Color-Odd-Name
strategy; these children demonstrated comprehension
of  the word, but for production named another color
from their lexicon which also did not have a stable
referent, thus again demonstrating they knew that
olive had a separate name.

Earlier, Nelson and Bonvillian [13] had performed a
study in which children were exposed to 18 new
concepts, of which 9 were made-up words and 9 were
were actual English words which the children had not
yet acquired (7 control children also did not acquire
these words by the end of the study). In a series of 10
experimental sessions, the children were presented
with examples while every third session an unnamed
exemplar was used to test comprehension.
Comprehension was tested both by asking for the
object by name, and  by holding up the example and
asking "Bring me one of these."  This study
demonstrated that the child could acquire the name
from a single example, but that learning was more
likely when two or four named exemplars were
encountered.

In examining the question of what characteristics of
language are dissociable, Bates et al. [1] also
performed a study examining the  acquisition of a
novel concept in young children.  In this study, a
novel object was given both a novel name ("fiffin")
and a novel associated action ("glooping").  In an
initial 5 minute exposure conducted in the home, the
children were shown several fiffins and glooping was
demonstrated.  In a lab session 2-3 days later,
comprehension was tested through a multiple choice
test and in a play session: "Make the kitty gloop the
fiffin."  Of the 23 subjects, 9 performed the gesture
successfully in the home, while 18 did so in the lab.
8 subjects also made successful verbal attempts at
pronunciation in the home; 9 did so in the lab.
During the multiple choice test, the average score
was 75% correct, where 33% was chance.
Additionally, 18 kitties successfully glooped. This
study demonstrated again that children can obtain a
concept after an extremely brief exposure, and that it
was not necessary to perform imitation to obtain the
concept, as many demonstrated lab comprehension
without acting out in the home.  Additionally, Bates
showed that the type of knowledge the child
demonstrated was correlated with language "style";
that is, fiffin comprehension was related to early
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comprehension, while fiffin imitation was related to
early production.

Mabel Rice [16] addressed word acquisition from
television viewing, thus offering evidence that neither
lexical acquisition nor fast mapping in particular are
limited to interactive exchanges.  In one study, Rice
exposed a number of children to short cartoon
segments which were designed to introduce new
words. The test words in this case consisted of actual
English which the children did not already have in
their vocabularies, and which included a number of
words which were not object names or attributes.  In
all, each subject was exposed to 20 new words in a
brief time; each 12-minute cartoon presented several
instances of a few new words, 114 presentations over
all words total.   From this exposure, the 5-year-old
subjects gained an average of 4.87 words as
compared to controls, while the 3-year-olds gained an
average of 1.56 words.  This study demonstrated that
new words need not be contained in exaggerated,
referent-matching contexts in order to be acquired,
and that the new word need not be surrounded
exclusively by familiar words.  Additionally, this
study demonstrated that words other than object
names and attributes were also subject to fast
mapping, and that the new words need not be
presented in the exact same context each time in
order to learn. Rice did additional work [17] in a
more naturalistic home environment, where it was
demonstrated that children learn new words rapidly
from educational programs such as "Sesame Street"
even with the environmental distractions associated
with home television viewing.

In a study intended to explore what aspects of a word
are developed upon fast mapping, Chris Dollaghan
[3] tracked acquisition and use of a nonsense word,
"koob".  This word was introduced in a naturalistic
setting; the experimenter asked the child (age 2:1 to
5:11) to "Hide the koob under the bowl"  rather than
explicitly stating "This is a koob."  The experiment
was constructed so that the child could actually
perform the task requested without forming any
theory of the name of the intended object.  After one
exposure to the word, the  subjects were later tested
for comprehension ("Hand me the koob"), production
("What's this?"), recognition ("What is this?  Is it a
koob, soob, or teed?") and association with location
("Where did you hide this?").  In most cases, an
immediate inference between the unfamiliar word
and object was made, although the extent to which
that knowledge was available for use varied
considerably from child to child.

2.2 Manifestations, Modulations, Limitations

The above studies and many others demonstrate that
the fast mapping phenomenon is a real, robust
occurrence which appears over a variety of situations.

The amount of fast mapping varies with age; in
particular, subjects who are too young do not show
much learning.  Learning occurred more readily over
a broad base of examples rather than a narrow base
(only 1 example).  Fast mapping is robust across
method; children successfully acquired words from
limited exposure whether the presentation was by an
experimenter, the child's mother, or the television.  It
is robust over distraction, as demonstrated in the
unfamiliar environment of a laboratory or in the
distracting environment of television viewing in the
home, with its associated sibling, parental and play
distractions. Fast mapping is robust across linguistic
method of presentation; the effect was present for
words presented in incidental naming, explicit
presentation  ("This is a ... ' ), and in sentences both
where the surrounding words were all familiar and
when they contained other unknown words.

The amount and manifestation of the effect was seen
to vary with gender, age, and cognitive style --
whether the child favors one word, telegraphic
speech versus whole-phrase speech.  Additionally,
the effect varied with birth order and sibling
constellation.  Nelson and Bonvillian [13] found that
children whose next-older sibling was less than 24
months older gained the most words, with first-born
children close behind while lagging last were those
children whose next-older sibling was more than 24
months older.  Nelson and Bonvillian hypothesize
that the first-born children have the added advantage
of parents who have more time to spend, and thus are
exposed to more explicit referential sentences and
more parental time overall.  Short-lag children lose
the benefit of total parental attention, but are helped
to a greater extent by the presence of an older sibling
whose speech is more like their own than like the
parents'.  That is, the short-lag child receives  more
predigested and simplified examples of speech on
which to bootstrap; some of the processing has
already been done and the short-lag child can
leverage off this benefit.  Conversely, the longer-lag
children do not have this benefit, and also do not
receive parental attention to the extent that first-born
children do.

2.3 Theory

Rare Event Cognitive Comparison Theory

In [14], Nelson explores how current language and
cognitive levels facilitate and limit what will be
learned next.  The overall acquisition mechanism
depends on cognitive comparisons between old and
new structures in order for the child to determine
when the current language structure is insufficient.
The mechanism is seen as a "rare event" mechanism,
as the attention to new input which leads successfully
to the development of new structures for the child's
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future use  occurs only rarely.  The development of a
new structure occurs along the  following lines:

1. Assignment of old structure to new input
strings.  As long as new input matches the
structures already in use, the system need not
change.

2. Tentatively Abstracted Foci.  Something
happens to draw attention to some area of the
structure, to create a "hot spot" of attention.
This may occur because a number of
mismatches of new input strings have drawn
attention, or simply because the child's
existing  structures have developed to a certain
extent which prepares for a new structure. In
this way, developments can bootstrap, as a
child may not be ready for a particular
structure until other supporting structures have
been laid out first.

3. Finding input mismatches within Tentatively
Abstracted Foci.  Once attention is drawn,
mismatches will be more readily noticed and
attended to.

4. Selective Storage.  Certain strings of interest
will be stored, perhaps in episodic memory.

5. Selective Retrieval.  With attention to
mismatches, previously encountered examples
can be retrieved for comparison with the
detected mismatch.  Note that language
advances can thus be made during private
thinking, as the child retrieves example strings
from memory and mulls them over alone.

6. Selective Analysis.  The child considers the
newly collected data.

7. Selective Hypothesis Monitoring and
Consolidation.  A conclusion is reached and
new structures are tentatively created.
Previously encountered and new input strings
are compared against the new structure, which
is eventually consolidated into the child's
language structure.

From this point of view, one can see how input
exposure will affect the child's particular path to
language mastery.  Different types of input will cause
individual children to call into question various
structures at different times.  The  particular
structures the child attends to will determine the path
of acquisition the child takes.  The issue of birth
order mentioned above can be cast in this light; input
from a slightly-older sibling is more like the child's
own production, thus the differences are small and
more easily attended to, allowing the younger child to
ride on the coat tails of the older sibling's language

efforts.  Similarly, first-born children tend to get
more explicit input from parents, and thus again
attention is more readily drawn.

A Tentative Approach

The fast mapping phenomenon may then be cast in
the light of the preceding information. One may
envision a protracted "hot spot" of attention to word
naming which the  child encounters, perhaps driven
by the root cause of the above elaborated system.
Based on the data collected from the various studies,
we may draw the following conclusion:  Fast
mapping in children and the resultant characteristics
of the word which the child thus obtains are affected
by area of attention and input amount and style, and
the use of episodic memory to integrate and store the
information.  It is reasonable to hypothesize that a
language acquisition model which incorporates these
elements may also demonstrate the fast mapping
phenomenon.

3 Episodic Memory

Human memory is not performed by a single
mechanism, but consists of several different
functionally and physically distinct components. To
simplify, a distinction may be drawn between what
can be termed declarative memory, that of explicit
facts and events, and nondeclarative memory, which
is involved in such things as habit formation and
priming. Only the information in the declarative
memory can be consciously recalled, and it is this
part of memory which is of concern when addressing
one-trial lexical acquisition.

Lesion studies point out the essential role of the
hippocampus and surrounding structures in the
operation of declarative memory.  Again to simplify,
the hippocampus is involved in processes which bind
together previously unrelated  events (represented in
different parts of the brain), which then together
constitute a memory of the event in question.
Additionally, the hippocampus also participates in
forming in neocortex an integrative trace of a newly
formed memory, possibly through a feedback loop
between neocortex and the hippocampus.  That is, the
hippocampus develops and maintains a temporary
"trace" of the formed memory  while a more
permanent one is formed elsewhere in the brain.

Thus it becomes clear that in order to adequately
model the process of lexical acquisition in a more
realistic manner, and to thus develop a system which
will naturally manifest the fast mapping behavior, it
is necessary to develop a system which addresses the
issues of attention, episodic memory, short-term
memory to long-term memory conversion, and the
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ability to generalize similarities and still handle very
novel input gracefully.

4 Connectionism

In this section we look at previous work which has
been performed, with an eye to systems which may
result in fast mapping.  We examine standard
network architectures, followed by specific systems
which have attempted to emulate episodic memory or
lexical acquisition in general, or the fast mapping
phenomenon in particular.  This is followed by an
examination of a handful of larger systems which
attempt to more adequately address human
performance issues.

4.1 Basic Connectionist Models

Backpropagation

The backpropagation neural network [19] is a
multilayer architecture consisting of interconnected
layers of processing units.  Input vectors are
presented to the elements of the input layer, and
activation is propagated through the network to the
output layer.  During training, the values at the output
layer are compared to the actual desired output
associated with the given input vector.  Any error in
the network output is used to calculate adjustments to
the network weights using a gradient descent
technique.  The overall effect is that over time, the
network weights adjust to form a  representation of
the function described by the set of input-output
vectors presented.  The backprop network is often
able to form a generalization of the function, rather
than a simple mapping-and-recall of the input-output
pairs.  This generalization is often desirable, in that
inputs which are similar to learned data will receive
outputs which are similar to the learned patterns.
Unfortunately, often truly novel inputs will also be
given a generalized output, rather than the specific
output to which it is matched.  This has some utility
in modeling overgeneralization in language
acquisition, but does not function properly for the
acquisition of novel concepts.

Unfortunately, as powerful as backprop is, it is not
suitable for modeling the fast mapping phenomenon.
If a new input is presented to a network which has
already been trained, it is possible that the
representation the network has developed is not
suitable to generate the proper output for the input. In
this case we would like to perform additional training
on the network to incorporate the new data.
Unfortunately, presentation of the new input-output
pair to the network for only a few training cycles may

not be sufficient to adjust the weights to properly
represent the new information.  Simply adding the
new data to the existing training set and continuing
training will require many training episodes for the
network to develop a representation  of the new data;
it will not display the rapid learning desired.  One
also may attempt to force the weights in the network
to make a large adjustment in the direction indicated
by the new data; however, this technique runs the risk
of losing previously learned  associations as the
network may move too far in that direction.  Either
way, the network will take too long to learn or will
not learn well enough to model fast mapping.  (But
see Section 4.5 below on some possibilities afforded
by recurrent networks, i.e. networks which allow self
connections or backward connections.)

Autoassociative Memory

The autoassociative neural network is actually a large
family of paradigms, all of which have in common
the association of an input vector with itself. One
very useful member of this class is the Kohonen
network [7].  In this model, the network consists of a
number of processing elements each of the same
dimensionality as the input. Through training, the
values in the element vectors are adjusted so that they
come to represent the space of possible input vectors
(as represented by the examples given during
training).  Training this network consists of
identifying the processing element which lies closest
to the input vector, and adjusting the element vector
towards the input vector by some fraction of the
distance between them. With the addition of
"neighborhood" links, in which each element is
connected to additional processing elements which
will form its neighbors, the network will form a
topological map of the space of input data.  A
common use of the "neighbors" is to adjust all those
elements in the closest element's neighborhood
toward the input vector also, by a smaller amount
than the winner adjustment.  Through a very large
number of training presentations the processing
elements come to reflect the spatial representation
and extent of the training input.  An example
representation of a network which has been trained to
represent an even distribution of points in the unit
square is shown in Figure 1.   This type of network,
frequently called a topological map or feature map, is
often used as a memory of examples seen, and as
such may be a candidate for representing lexical
memory in humans.  Since the network is self-
organizing and topological, it will develop areas of
common information which can be seen as
representing  a lower dimensional projection of the
main information represented by the network.
However, since the mapping is continuous, the
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Figure 1: Autoassociative Topological Map

precise boundaries of the various categories
developed are not specified.

This feature map paradigm has several properties
which make it less than adequate  for representing
fast mapping.  The most obvious weakness is that the
network  always returns as the winner the vector of
the element which is closest to the  presented input.
For generalization, this is a desired trait in that one
will always be presented with a representative vector
which will be identical or similar to an actual input
from the training set, or some blended combination of
inputs.  The problem comes when a novel input is
presented which is very much unlike those previously
seen.  In normal operation, that element vector which
is closest to the input vector will be returned as a
"memory" of the input, regardless of the actual
distance to the input.  The network does not take into
consideration the actual distance from the nearest
vector, nor the typical distance between vectors in
the trained network.  One may wish to use the
distance between the input vector and the closest
processing element as an indication of whether the
input is correctly categorized by the network.
However, absolute error is not an adequate measure
because there is no threshold for a decision of "don't
know."  The distance threshold will vary between

individual processing elements; an element in a
densely populated area of input space will encompass
a much smaller area for its valid inputs than an
element in a sparsely populated area. The network
has no notion of representing "don't know" or of
flagging that the input is extremely different.

Additionally, a problem still lies in modifying the
network to incorporate the new information.
Addition of a truly novel input may deform the
network severely, with performance returning only
gradually through continued training over the entire
training set.  This is clearly not an adequate model of
fast mapping.  The standard implementation of
autoassociative feature maps will not adequately
model the fast mapping phenomenon.

4.2 Attempts to Address "Fast" Mapping

Fast Weights

Hinton and Plaut [6] modified a standard
backpropagation network to have two connections
between each unit: one with a slow, stable weight and
one with a fast, elastic weight.  The slow weights
function much as they would in a  regular
connectionist model: they change slowly and hold the
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long-term knowledge of the network.  In contrast, the
fast weights change rapidly and  continually decay
toward zero, and thus reflect only the recent past. The
effective connection between two units is the sum of
the fast and slow connections. At any time, the
system's knowledge can be thought of as the slow
weights  with a temporary overlay of the fast weights.

This system could be used for for rapid temporary
learning.  In other words, when presented with a new
association, the network could conceivably store the
information in one trial.  Although this addresses the
issue of a backprop not being able to rapidly integrate
new information, this setup does not address the
possibility of previous knowledge being obscured by
the new addition.  This solution is obviously better
than forcing a single set of weights in the direction of
the new information, as the previous knowledge is
not lost; however previously learned associations
may still be unavailable while the temporary weights
are in place.

Additionally, although it is easy to train the fast
weights for the desired one-shot learning effect, it is
not clear how to incorporate the new associations
gracefully into the slow weights for long-term storage
without the traditional drawbacks of continued
training with the entire training set plus the additions.
Thus, this system does not adequately meet our needs
for fast mapping as seen during language acquisition.

CHARM

The CHARM (Composite Holographic Associative
Recall Model) system developed by Janet Metcalfe
[10] [9] [11] uses a mathematical technique similar to
that used in holography to form an associative system
which can be rapidly updated through the operations
of convolution and correlation.  The use of
convolution for association results in the interaction
of all of the parts of one item with all of the parts of
another.  The system is presented input/output pairs
represented as feature vectors to be associated.
Through various mathematical transformations, the
input  is associated with the output, and their total is
combined with the results of other pairs into a large
system representation.  For recall, the input is
presented to the whole system, and further
mathematical machinations are performed, resulting
in a vector intended to represent the output of the
original pair.  Due to the nature of the mathematics,
this system shows one-shot learning.  That is, upon
one presentation of a pair, the association is
contained in the system.  This shows much more
promise in the modeling of fast mapping than the
models considered thus far, but as noted above, in
practice the fast mapping phenomena does not occur
every time, nor does a successful fast mapping imply
that the concept has been obtained in its entirety.  If

the CHARM model were an accurate representation,
more cases would be seen of concepts springing
fully-formed from the little wizards' minds, as it
were.

However, CHARM does have to its credit the ability
to model quite a number of other psychological
phenomena, including generalization and a number of
memory interference and failure effects.  This system
holds much promise in its future applicability as a
model of fast mapping.

4.3 The DISCERN Model

Description

The DISCERN model (DIstributed SCript processing
and Episodic memoRy Network), developed by Risto
Miikkulainen [12], is a distributed artificial neural
network system which learns to process simple
stories which follow a stereotypic framework. As
such, it combines the traditional symbolic artificial
intelligence paradigms of scripts and frames with
more realistic cognitive modeling and
neurocomputation methodology.  This model
combines the issues traditionally associated with
script-based story understanding and adds to it the
idea of episodic memory. There are several issues
which the symbolic approach to script theory does
not address.  For instance, the architecture,
processing mechanisms and  knowledge embedded in
symbolic systems are hand-coded with a specific
domain and data  in mind.  Inferences are based on
handcrafted rules and representations of the scripts.
Such systems cannot utilize the statistical properties
of the data to  enhance processing.

One thing which the DISCERN model brings to the
story understanding task is the idea of episodic
memory.  Narratives are stored in the model one at a
time as they are read in, with only a single
presentation.  The new story is recognized as an
instance of a familiar sequence of events and
attention is paid only to the facts specific to the story,
even though the system has not gone back and
explicitly reactivated all the stories previously
encountered.  This parallels human episodic
memory, which seems to be structured to support
classification based on  similarities and storing the
differences, with the particular structures being
developed by experience.

The episodic memory structure of DISCERN also
supports associative retrieval.   As in humans, a
question supplies only partial information about the
story  to which it refers, yet the story is retrieved with
only the question as a cue.  The DISCERN model has
been developed to address these issues.  It is the
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Figure 2: Hierarchical Feature Map

implementation of episodic memory which is of
interest for the purposes of this paper.

Episodic Memory Implementation

The DISCERN model implements episodic memory
as a collection of traces on a hierarchical feature map
system.  As described above, a self-organizing
feature map (autoassociative network) is a
(biologically-motivated) method for unsupervised
learning and for organizing information.  The feature
map representation has many properties which make
it well-suited for modeling memory.  Classification
performed by a feature map is quite robust, even in
the presence of noise or incomplete inputs.
Categorical perception can be thus modeled, since
inexact input often results in the recovery of the exact
representation of previously stored data. In contrast,
since the feature maps tend to be continuous with
intermediate states, it is possible in some cases to
recover a blend of a number of items. However, as
also mentioned above, the feature map representation
suffers from the drawback that boundaries of related
areas are not specified on the map. Additionally,
feature maps created from high-dimensional input
vectors take a long time to train.

These drawbacks can be addressed to some extent
with hierarchical feature maps.  In this case, the
hierarchical nature of the input features are
represented by a pyramid of feature maps.  This

speeds the learning of the system, and makes
categorization easier.  In this setup, the input features
are initially classified by the uppermost map.  The
vector is then passed down to subsequent maps for
more detailed classifications (Figure 2).

The episodic memory storage and retrieval is
implemented in the system as trace feature maps on
the hierarchical map structure.  Trace feature maps
differ from ordinary feature maps by creating a
memory trace at the location of classification  on the
map.  The map remembers that at some point it
received an input item which  was classified at that
point.  The traces can be stored one at a time, and the
whole of the traces over an episode constitute the
memory of events.  The traces are modeled by using
the "neighborhood" links of the feature map as
activity links to develop basins of activation.  The
attraction bubbles created by the various memory
traces are then superimposed and blended.  Upon
memory recall, a partial or noisy input is presented to
the system.  If it falls within an attraction bubble, the
activation will be drawn towards the center of the
bubble, and the stored vector associated with the
center will be returned.  In this case, the input vector
could represent a question for the system, with the
unspecified features representing the unknown roles,
which would then be filled in through returning the
center vector of the specific instance activated.
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Figure 3: Sentence Gestalt Network Model

In terms of representing episodic memory, this
system performs well.  New stories presented to the
system develop a memory trace which is robust in a
small number of presentations, and thus models the
"fast" part of fast mapping without resorting to an
artificial, "guaranteed one-shot" learning mechanism.
The system demonstrates a number of memory
phenomena such as  interference effects and
generalization.  The structure of the system does not
overly constrain how the information in the memory
is to be organized, and thus the system with use
comes to reflect the statistical properties of the data it
has seen.

However, like the Kohonen Feature Maps reviewed
earlier, the system suffers from  the limitation that it
cannot learn truly novel information.  That is,
although it can successfully represent stories on
which it was not originally trained, stories which are
extremely unlike those seen during training will not
be handled correctly.  Several suggestions for
extensions to the system (including those suggested
by the author) addressing this limitation will be
examined in Section 5 below.

4.4 Attentional Mechanisms

The "sentence gestalt" model of St. John and
McClelland [20] was developed as an attempt to
create a model which learns to convert a sentence to a
conceptual representation of the event which the
sentence describes.  The model is intended to
disambiguate ambiguous words, instantiate vague
words, assign thematic roles, and elaborate implied
roles.  In addition, it is required to learn to perform
these tasks, and perform them on-the-fly as the
sentence is presented, rather than waiting until the
sentence is finished and then performing calculations.
The model is a mostly feed-forward network with a
number of hidden layers and a small amount of
recurrence (Figure 3).

The model performs rather well at its assigned tasks,
and is able (through the "probe" inputs) to answer
questions about the representation of a sentence it has

developed.  It also demonstrates a number of
appropriate phenomena such as generalization,
interference and priming effects, and frequency
effects.

For the purposes of this paper, the most interesting
property of the sentence gestalt system is that it
effectively develops an attentional mechanism. That
is, the system must learn through example which
parts of the sentence are important for providing
which types of information.  The system learns to
make appropriate balances between word order and
semantic constraints for determining the meaning and
roles of words in a sentence, for example, without
this knowledge being otherwise coded into the
system.

4.5 Generalization and Novelty

Although the linguistic processing model developed
by Plaut et al. [15] focuses mainly on learning to read
(bold connections in Figure 4), the system they have
developed demonstrates some interesting behavior
which may be applicable to modeling fast mapping.
Plaut and his co-authors develop a recurrent network
which learns to map orthography, the printed letters
of a word, to phonology, the phonetic representation
of the word.  Their effort has produced a system
which not only performs the mapping task, but
successfully demonstrates the frequency versus
consistency effects shown by human  subjects and
additionally shows performance following damage
which parallels the language difficulties of surface
dyslexic patients.

The interesting behavior of the model in terms of the
fast mapping task is the behavior of the recurrent
network in the face of novelty.  It is of some  concern
when using recurrent networks that due to the
dynamics of the attractor surface represented by the
system weights, novel inputs will be treated as
"incomplete" or "noisy" data and subjected to the
generalization behavior of the network.  However,
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Figure 4: Linguistic Processing Framework

their network develops basins of attraction which
interact like ripples in a pond to create additional
attractor basins  for data which has not actually been
presented to the network.  For instance, even if the
network has only seen evidence for by (mapping to
the sound /bI/) and no (mapping to the sound /no/)
the network may also form an attractor basin into
which bo would naturally fall (i.e. /bo/).  These extra
basins can be shown to be a natural consequence of
having a highly connected, high dimensional
dynamic space.

Note that in this case, the network demonstrates fast
mapping.  That is, even though the network had not
been trained on the mapping between the letters bo
and the sound /bo/, the network correctly made the
mapping.  The network has  an appropriate attractor
basin for this mapping, and the system provides just
enough of a nudge to enter the basin and converge to
the mapping.  At this point, any training on this
specific example will serve to deepen and expand the
attractor basin, thus ensuring that the mapping will be
made more readily (in this case, fewer steps until
convergence) in the future.  This rapid initial
mapping followed by subsequent strengthening of the
learned associations is exactly the phenomenon
which we seek.  The use of this type of network in
the processing of learning to speak has been
anticipated by Plaut et al. as represented by the dotted
line in Figure 4, although this use was not addressed
directly in their paper.

5 What's Missing; What's Promising

None of the models explored adequately model fast
mapping (nor linguistic acquisition in general) in a
way which is satisfactory to represent a model of

human performance.  However, several of the
systems show promise, which may be exploited
through  various changes.  Using these modified
systems, an overall connectionist system can be
developed which may indeed display the desired fast-
mapping phenomenon, while still producing overall
behavior which is consistent with other aspects of
human language acquisition.  The proposed system
combines aspects of the DISCERN model to
represent episodic memory, the sentence gestalt
network to provide an attention mechanism, and a
recurrent network as described above to represent
long-term memory.

The DISCERN model [12] representation of episodic
memory has as its largest drawback an inability to
represent truly novel inputs due in part to its basis in
symbolic script theory but mostly due to the nature of
the autoassociative networks used.  However, as
suggested by the author, modifying the episodic
memory to provide dynamic recruitment of new units
to the network as needed would address this problem,
with additional reorganization training conducted
between input episodes.  This can be seen as an
implementation of the structure building theory
examined in section 2.3,  with offline restructuring
paralleled by language development which occurs
during the child's private play.  We propose also that
if the input feature vectors, rather than being
handcoded to represent the scripts, were learned by
an additional network system, this network would
become a more accurate model of episodic memory.

The sentence gestalt model developed by St. John
and McClelland [20] is an ideal candidate for the role
of just such an additional network.  As described
above, this network has demonstrated the ability to
develop a form of attentional mechanism.  We
propose that a network similar to that of St. John and
McClelland be used to determine which input
features deserve the most attention.  These feature
vectors may then be used as the basis for a system
similar to the DISCERN model.

Finally, we propose a recurrent system similar to the
one used by Plaut et al. [15] to represent the long
term memory.  This type of system provides the
necessary generalization and ability to represent
novel inputs which is necessary for the representation
of memory.

In this model, the sentence gestalt network/attention
mechanism would steer the focus of the network to
features of interest, where the interest would itself be
defined by the attention mechanism and would
evolve over the course of the simulation.  The gestalt
of the inputs and features of focus would then be sent
to the episodic memory network, where the incoming
information would be incorporated  into the episodic
representation, recruiting units as required to
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represent novel information. As mentioned above, the
episodic memory will be in a state of continual
reorganization; once the episodic memory "settles
down" in its representation of a new concept, that
representation can then be incorporated slowly into
long-term memory.  If the representation for a
particular concept developed by the episodic memory
does not exist or is substantially different from that
stored in the long-term memory, the new
representation will, through gradual training, be
incorporated into the long term memory.  If the
episodic representation is consistent with that already
in long-term memory, the representation will be
consequently strengthened in long-term memory
through additional training.  Finally, feedback from
both the episodic and the long-term memory can
interact with the attentional mechanism to provide the
basis from which to detect novelty and discrepancy
worthy of attention.

It is hoped that the system proposed will adequately
model the process of lexical acquisition in a more
realistic manner, and thus  will naturally manifest the
fast mapping behavior.  The proposed system is
intended to address the issues of attention, episodic
memory, short-term memory to long-term memory
conversion, and the ability to generalize yet still
handle novel input gracefully.

6 Conclusions

The prodigious rate at which young children acquire
language has led some to dub them "linguistic
wizards."  The task of acquiring thousands of words,
along with semantics and syntax and learning to tie
their shoes all within a few short years, requires fast
mapping, or the acquisition of a word through
extremely limited exposure.  This effect has been
studied by a number of researchers, and has been
found to be quite robust.

The field of connectionist modeling, in its quest for
insight into human language acquisition, has thus far
failed to develop a feasible system which adequately
mimics human performance in language acquisition,
including the fast mapping phenomenon so prevalent
in children attempting the task. However, as this
paper has shown, several current research efforts
show promise in addressing these issues.  In light of
this, a model has been proposed consisting of a
combination of various system components described
in this paper,  which is intended to more closely
model episodic memory, attention, and
generalization.  It is argued that this model would
then display the characteristics associated with
human performance, including the fast mapping
phenomenon.
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