
 
 

  

 

Address for correspondence: 

http://crl.ucsd.edu

majordomo@crl.ucsd.edu
subscribe   newsletter   <email-­address>" subscribe  
newsletter  jdoe@ucsd.edu

1

wen
Typewritten Text



Back issues of the the CRL Newsletter are available on our website. Papers featured in recent issues include:

The Role of Orthographic Gender in Cognition

Tim Beyer & Carla L. Hudson Kam

Center for Research in Language, UC San Diego

Vol. 20. No. 2, June 2008

Negation Processing in Context Is Not (Always) Delayed

Jenny Staab

Joint Doctoral Program in Language and Communicative

Disorders, and CRL

Thomas P. Urbach & Marta Kutas

Department of Cognitive Science, UC San Diego

Vol. 20. No. 3, December 2008

The quick brown fox run over one lazy geese: Phonological

and morphological processing of plurals in English

Katie J. Alcock

Lancaster University, UK

Vol. 21. No. 1, March 2009

Voxel-Based Lesion Analysis of Category-Specific Naming on

the Boston Naming Test

Juliana V. Baldo

Center for Aphasia and Related Disorders, VA
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faele, Milan, Italy

IBFM, CNR, Segrate Milan, Italy

Vol. 26. No. 1, March 2014

2

wen
Typewritten Text

wen
Typewritten Text



Flexible use of perceptuomotor knowledge in lexical and semantic decision tasks 
 

Ben D. Amsel (bamsel@ucsd.edu) 
Department of Cognitive Science, University of California, San Diego 

9500 Gilman Drive, La Jolla, CA, USA, 92093-0515 
 

Abstract 

People know a lot about the perceivable properties of objects 
in their environments. We know, for example, that peacocks 
are colorful, ashtrays are smelly, and hammers are typically 
grasped in one hand. This study examines the extent to which 
several modality-specific object attribute ratings can account 
for performance in lexical and semantic decisions tasks. 
Seven continuously distributed variables from object attribute 
rating norms (smell intensity, color vividness, taste 
pleasantness, sound intensity, graspability, likelihood of 
motion, likelihood of pain) are used to predict decision 
latencies from three tasks varying in depth of semantic 
processing (living / nonliving; concrete / abstract; word / 
nonword). After controlling for standard word form and 
lexical variables, two modality-specific variables significantly 
predicted decision latencies in each task. Separate analyses 
were conducted for items denoting living things and items 
denoting nonliving things. In each task, modality-specific 
variables accounted for more variance in living thing 
latencies, and non-semantic variables accounted for more 
variance in nonliving thing latencies. These results suggest 
that modality-specific knowledge can be used flexibly to aid 
in lexical and semantic decision-making and are most 
consistent with “lexicon-free” models of word recognition. 

Keywords: semantics; word recognition; decision-making; 
perceptual; motor; knowledge; mixed-effects models. 

Introduction 
 Understanding written language requires a mapping 
between a visual form and previously acquired knowledge 
represented in long-term memory. Unlike memory retrieval 
in a digital computer, this process is sensitive to the task 
context in which language is comprehended. The present 
work addresses how our knowledge of objects can be used 
flexibly during language comprehension in varying task 
contexts. Specifically, I address the degree of flexibility in 
using perceptual and motor-related object knowledge during 
lexical and semantic decision-making tasks that vary in 
depth of semantic discrimination. 
 Varying the experimental task while holding the stimuli 
constant can exert a relatively persistent effect on the state 
of the cognitive and neural systems responsible for deriving 
meaning from language. Bermeitinger, Wentura, and Frings 
(2011) showed that semantic priming can be effectively 
switched on or off by manipulating task-related context. 
Participants exhibited priming for natural concepts, for 
which perceptual features are particularly salient, only when 
they had previously attended to perceptual properties of 
simple geometric shapes. In contrast, they only exhibited 
priming for artifactual concepts, for which function-related 
knowledge is particularly salient, when they had previously 
attended to action-related properties of the geometric 
shapes. Similarly, Tousignant and Pexman (2012) showed 

that the rated likelihood of interacting with an object 
predicted decision latencies on words denoting entities and 
actions only when participants were explicitly told to 
categorize the words based on the presence or absence of an 
entity, but not an action. In these and other studies that have 
manipulated the task-based context in which words are 
embedded (Grossman et al., 2002; Grossman et al., 2006; 
Hoenig, Sim, Bochev, Herrnberger, & Kiefer, 2008; West & 
Holcomb, 2000), systematic differences in behavioral 
performance or neural activity cannot be attributed to the 
eliciting stimulus, which is held constant, but rather reflect 
the current state of the system acting upon the stimulus.  

Flexibility in word recognition 
 The notion of a graded and flexible word recognition 
process (rather than an all-or-none and encapsulated 
process) has long existed in the computational modeling 
literature. LaBerge and Samuels (1974) proposed a model 
whereby attention could be flexibly deployed to the 
phonological, orthographic, or semantic systems, and 
information could be passed between systems before it was 
fully processed. McClelland’s (1979) cascade framework 
and subsequent connectionist implementations (e.g., Plaut, 
McClelland, Seidenberg, & Patterson, 1996) are inherently 
flexible in that sub-processing levels continuously provide a 
record of partial information to subsequent processing 
levels—and in the case of recurrent networks, partial 
information from previous time points is available within a 
single processing level. Depending on the nature of what 
this information is to be used for (e.g., understanding an 
utterance, making a lexical decision), the subset of activated 
information that is recruited to solve the task, and the time 
course of this recruitment, can naturally vary. For example, 
Elman’s (1990) simple recurrent networks treat words not as 
discrete tokens corresponding to lexical entries, but rather as 
stimuli whose properties are interpretable from their 
dynamic effects on the internal state of the comprehension 
system. These effects are dynamic precisely because they 
“are always and unavoidably modulated by context” 
(Elman, 2004, p. 302).  
 Balota and Yap (2006) similarly claim that “there are no 
process-pure measures of word-recognition” (p. 5). To 
account for the role of context in word recognition, Balota 
and colleagues (Balota, Paul, & Spieler, 1999; Balota & 
Yap, 2006) have introduced the flexible lexical processor, 
wherein attentional control exerts a task-specific influence 
on word recognition by differentially recruiting particular 
pathways between components of the system. They contrast 
the naming task, which relies on connections between the 
orthography and phonology modules, and lexical decision, 
which relies more on connections between orthography and 
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semantics, consistent with the known influence of 
conceptual knowledge on lexical decision performance. The 
word recognition literature includes much work on the 
influence of semantic variables in general, but relatively 
little work on the influences of specific kinds of semantic 
knowledge. The semantic memory literature, however, has 
made some progress in this area that is relevant for the 
current study. 

Flexibility in conceptual processing 
 The notion of conceptual flexibility has recently been 
addressed by Hoenig et al. (2008) and by the Language and 
Situated Simulation (LASS) theory (Barsalou, Santos, 
Simmons, & Wilson, 2008; Simmons, Hamann, Harenski, 
Hu, & Barsalou, 2008), which is quite similar to Paivio’s 
and Glaser’s theories that posit verbal and pictorial codes 
(Glaser, 1992; Paivio, 1991). According to LASS, situated 
simulation (partial reactivation of the neural patterns formed 
during initial experiences with a word’s referent) and 
activation of specific lexical forms occur in varying 
proportions, depending on the situation. Barsalou et al. 
(2008) assert that the situated simulation system and 
linguistic system produce overlapping distributions of 
activity in which activity in the linguistic system typically 
peaks before activity in the simulation system, but the level 
of activation is sensitive to task context. Situated simulation 
is thought to occur when correlated information in 
perceptual, motor, and introspective brain areas becomes 
active to represent a concept in a particular context. The 
current behavioral experiments provide an indirect test of 
this hypothesis in that several kinds of perceptual and 
motor-based knowledge about a common set of objects are 
used to account for performance in three different decision 
tasks. 
 Prior to the present study, only a handful of studies have 
examined the role of modality-specific semantic variables in 
visual word recognition (e.g., Amsel, Urbach, & Kutas, 
2012; Grondin, Lupker, & McRae, 2009; Lynott & Connell, 
2013). On the other hand, research conducted in the past ten 
years has led to a better understanding of semantic richness. 
One of the first results in this area that has stood the test of 
time is that concepts with more listed features (i.e., 
possessing greater semantic richness) facilitate performance 
in lexical and semantic decision tasks (Pexman, Lupker, & 
Hino, 2002; Pexman, Holyk, & Monfils, 2003). Most 
relevant for the current study, influences of semantic 
richness variables have recently been shown to vary flexibly 
across tasks (Hargreaves, White, Pexman, Pittman, & 
Goodyear, 2012; Pexman, Hargreaves, Siakaluk, Bodner, & 
Pope, 2008; Yap, Tan, Pexman, & Hargreaves, 2011). These 
authors argue that semantic richness is a multidimensional 
construct that can exert different magnitudes, and even 
directions of influence on behavioral performance, 
according to task demands. To the extent that object 
attribute ratings constitute modality-specific semantic 
richness, the present experiments also can inform the degree 

of flexibility in the role of semantic richness in lexical and 
semantic decision-making. 

Present study 
 To what degree does access to modality-specific 
knowledge influence behavioral performance in semantic 
and lexical decision criteria? The main goal of the current 
study is to compare the effects of lexical and modality-
specific conceptual variables on decision latencies in three 
different decision tasks. An additional goal of the current 
study is to understand the degree to which these influences 
vary by object domain (i.e., living thing and nonliving 
things). That is, to what extent do the effects of lexical 
factors and modality-specific conceptual factors differ 
across domains? Electrophysiological data suggest that the 
brain can begin to differentiate between words that refer to 
living versus nonliving things very rapidly following word 
form perception (Amsel, Urbach, & Kutas, 2013; Hauk, 
Coutout, Holden, & Chen, 2012). The word recognition 
system may be sensitive to this conceptual distinction early 
on in the processing stream, in which case one might expect 
a domain-level distinction in the kinds of conceptual 
variables that best predict decision latencies to items from 
either domain. 
 Modality-specific conceptual variables used in the 
current study are selected from a recent object attribute 
ratings study (Amsel et al., 2012), in which over 400 
participants rated 559 object concepts on several perceptual 
and motor attributes: smell intensity, taste pleasantness, 
visual motion, color vividness, graspability (in one hand), 
likelihood of pain, and sound intensity. Of course, these 
attribute ratings are not the only recently obtained sources of 
conceptual content. Several studies have produced a number 
of novel conceptual variables (Bennett, Burnett, Siakaluk, & 
Pexman, 2011; Juhasz & Yap, 2013 Lynott & Connell, 
2013; Lynott & Connell, 2009; McRae, Cree, Seidenberg, & 
McNorgan, 2005; van Dantzig, Cowell, Zeelenberg, & 
Pecher, 2011; Wurm, 2007). Some of these measures 
capture a weighted combination of information in multiple 
modalities. Imageability has been shown to reflect 
information about the visual modality more so than other 
modalities (Amsel et al., 2012; Connell & Lynott, 2012). 
Amsel et al. (2012) showed that Juhasz and Yap’s (2013) 
sensory experience ratings are significantly correlated with 
color vividness, smell intensity, taste pleasantness, sound 
intensity, and visual motion ratings, and that Bennett et al.’s 
(2011) body-object interaction ratings are significantly 
correlated with pain likelihood, sound intensity, 
graspability, and visual motion ratings. In addition, 
Warriner, Kuperman, and Brysbaert (2013) showed that 
several of the Amsel et al. (2012) attribute ratings are 
significantly correlated with valence, arousal, and 
dominance. Given this clear role of several different unique 
influences of perceptuomotor knowledge, the present 
examination of several such variables will be useful in 
elucidating how various kinds of conceptual content are 
used to inform the decision-making system. 
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 Finally, alongside several previous studies that assessed 
effects of naturally correlated item characteristics (Balota, 
Cortese, Sergent-Marshall, Spieler, & Yap, 2004; Hauk, 
Davis, Ford, Pulvermüller, & Marslen-Wilson, 2006; Juhasz 
& Rayner, 2003; Yap & Balota, 2009), this work utilizes a 
design and statistical analyses that enable assessment of the 
unique effects of multiple correlated variables, rather than 
the dichotomization-plus-ANOVA approach, which has 
known limitations when applied to correlated quantitative 
variables (Cohen, 1983; MacCallum, Zhang, Preacher, & 
Rucker, 2002). In addition, data from the current behavioral 
experiments are analyzed using the linear mixed-effects 
model to avoid problems with applying the general linear 
model to data varying on two or more sampling units (i.e., 
subjects and words). The mixed-effects model can 
simultaneously account for variability due to random 
subject and item variance independently of the treatment 
effect, which has been shown to decrease Type I error and 
increase power, as compared to by-subject and by-item 
ANOVA, item-based regression, and random regression 
(Baayen, Davidson, & Bates, 2008; Quene & van den 
Bergh, 2008).  

Experiments 1 & 2: Semantic decision tasks 
 Independent samples of participants performed two 
semantic decision tasks in which they decided whether a 
word denoted a living thing or nonliving thing (Exp. 1), or 
whether a word denoted a concrete or abstract entity (Exp. 
2). More generally, a successful decision in a 
living/nonliving thing decision task presumably requires 
accessing some amount of knowledge about the 
characteristics of the object to which a noun refers, whereas 
a successful decision in a concrete/abstract decision task 
merely requires determining whether the noun refers to an 
object or not. 
 What types of knowledge are most predictive of the 
living versus nonliving things? Cree and McRae (2003) 
showed that visual color and motion features are particularly 
salient for living things. Therefore I expected that color 
vividness and visual motion would be the best predictors of 
Experiment 1 living thing decision latencies. The best 
predictors of nonliving thing decision latencies are less 
obvious to predict. Cree and McRae (2003) show that 
function features most clearly differentiate between 
nonliving things and other object categories; however, the 
sensory/motor knowledge reflected in modality-specific 
object attribute ratings is not sufficient to determine object 
function. 
 In theory, access to any kind of sensory/motor 
knowledge could be used to determine whether a word 
refers to a concrete or abstract entity. However, Connell and 

Lynott (2012) showed that concepts rated high on 
concreteness are not equally associated with all types of 
perceptual knowledge. They showed that concrete concepts 
(versus less concrete and abstract concepts) were 
specifically biased towards visual knowledge and to a lesser 
extent olfactory knowledge. Therefore, although 
performance in the concreteness decision task could be 
dependent on access to any kind of sensory/motor 
knowledge, visual and olfactory attributes are expected to be 
the strongest predictors of concreteness latencies. 

Method 
Participants  

Thirty right-handed undergraduate students (17-25 years; 
18 females) at the University of Toronto Scarborough 
(UTSC) completed the living/nonliving decision task for 
course credit, and 27 students (17-30 years; 15 females) 
from the same population completed the concreteness task. 
Participants had normal or corrected-to-normal vision and 
reported no neurological impairment. Participants had been 
speaking English as their primary language for at least ten 
years.  
Materials 

Experimental items were nouns denoting 207 concrete 
concepts (101 nonliving things, 77 creatures, 29 fruits and 
vegetables) selected from the MRC Psycholinguistic 
database (Coltheart, 1981) and ranging in concreteness from 
543 to 662 (M = 606, SD = 22). Items were measured on 
number of letters, number of syllables, number of 
phonemes, word frequency (natural log of HAL frequency; 
Lund & Burgess, 1996) and number of orthographic and 
phonological neighbors (Balota et al., 2007). In order to 
minimize collinearity, the first principal component of 
number of letters, syllables, and phonemes (proportion of 
original variance: 89%), and the first principal component of 
number of orthographic and phonological neighbors 
(proportion of original variance: 95%) replaced the original 
variables in the upcoming analyses. Familiarity ratings 
(degree of familiarity with the entity to which the word 
refers) were taken from McRae et al. (2005). The modality-
specific variables consisted of smell intensity, taste 
pleasantness, visual motion, color vividness, graspability (in 
one hand), pain likelihood, and sound intensity ratings 
(Amsel et al., 2012). Abstract words (N = 207) were 
selected for use in the concreteness task from the MRC 
Psycholinguistic database and ranged in concreteness from 
183 to 399 (M = 332, SD = 42). Abstract words were 
matched to the concrete words on word frequency, letter 
length, and familiarity. Table 1 contains the Pearson’s 
correlation coefficients between all predictors. 
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Table 1: Correlations among item characteristics; * p < .05 (95% confidence interval around the estimate does not contain 
zero; determined with 100,000 replications of the accelerated bias-corrected bootstrap); CS: principal component scores. 

 
Variable Freq. Neigh. Fam. Pain Smell Color Taste Sound Grasp Motion 
Length CS -0.48* -0.72* -0.1 -0.06 -0.03 0.19* 0.1 0 0.11 -0.08 
Freq. -- 0.46* 0.46* 0.06 -0.09 -0.04 -0.16* 0.15* -0.09 -0.06 
Neighborhood CS -- 0.13 0.04 0.04 -0.14* -0.06 0.03 -0.07 0.03 
Fam.   -- -0.34* -0.15* 0.13* 0.07 -0.37* 0.37* -0.48* 
Pain    -- -0.07 -0.26* -0.39* 0.53* -0.32* 0.35* 
Smell     -- 0.23* 0.58* 0.04 -0.18* 0.13 
Color      -- 0.41* -0.15* 0.15* -0.1 
Taste       -- -0.36* 0.28* -0.24* 
Sound        -- -0.55* 0.47* 
Grasp         -- -0.52* 
 
 

Procedure 
Participants performed a living/nonliving thing or 

concrete/abstract decision task individually in a dimly lit 
room. The experiments were implemented with E-Prime 
(Psychology Software Tools, Inc). For the living/nonliving 
task, participants were instructed, upon viewing each word, 
to judge as quickly and accurately as possible whether the 
word denoted a living or nonliving thing. They were 
informed that fruit or vegetable concepts could be included, 
and should be categorized as living. Participants in the 
concreteness task were instructed to decide as quickly and 
accurately as possible whether each word denoted an 
abstract or concrete word. They were informed that concrete 
words denote “perceivable entities that you could see, hear, 
touch, smell, or taste.”  

The experimenter monitored 12 practice trials (containing 
either (a) six living things including one fruit concept and 
one vegetable concept and six nonliving things or (b) six 
concrete items selected from the previous 12 and six 
abstract items) to ensure participants understood the task 
and re-administered them if there was doubt about 
participants’ understanding. All items were presented in one 
block, in a different random order for each participant. Each 
trial began with a fixation (“+”) presented for a random 
duration between 1200-1800 ms, followed by the target 
word which remained onscreen until a response was 
recorded, followed by a 1000 ms white screen. Participants 
sat at a viewing distance of 70 cm from a 17” monitor with 
800x600 resolution and text was presented in size 18 black 
Tahoma Bold font against a white background in the middle 
of the screen. Participants signaled their response with a 
PST Serial Response Box (Psychology Software Tools, 
Inc.). In the living/nonliving task, half of the participants 
signaled living thing items with their dominant hand, and 
the other half signaled non-living thing items with their 
dominant hand. In the concreteness task, responses were not 
counterbalanced; all participants signaled concrete words 
with their dominant hand because I was not interested in 
responses to the abstract items. 

Data analysis 
Trials with decision latencies less than 200 ms or greater 

than 2000 ms were removed from further analyses, which 
affected less than 2% of all trials. The reciprocals of the 
remaining latencies were taken to reduce positive skew, and 
multiplied by -1 to retain the original sign (additional model 
fits using the logarithmic transformation did not yield 
qualitatively different model results). This transformation 
was undertaken to bring outlying response times closer to 
the majority of responses, which decreases the possibility 
that estimated model parameters are disproportionally 
influenced by a handful of outlying trials. All variables were 
then transformed to z-scores to facilitate comparisons across 
scales. Collinearity was assessed by inspecting variance 
inflation factors (VIF) of each term in each model. VIF is a 
measure of the amount that the variance of a parameter 
estimate is increased due to collinearity. No VIF were larger 
than three, which is well below a suggested upper limit of 
10 (Cohen, Cohen, West, & Aiken, 2003).  

The linear mixed-effects model was used for all data 
analysis. Models were fitted in the R environment (R 
Development Core Team, 2012) with the lmer function 
(Bates, Maechler, & Bolker, 2011). Statistically significant 
random variability existed among the by-subject intercepts 
and by-item intercepts in all models presented herein (as 
determined by likelihood ratio tests). The random effects 
structure of all models therefore included two parameters 
specifying the variance of the by-subject and by-item 
adjustments to the intercepts, as well as a third parameter 
specifying the correlation between these two random 
effects.  

Mixed-effects models were fitted to each set of decision 
latencies in two steps much like hierarchical linear 
regression analysis. The first model contained word 
frequency, familiarity, the component scores from the length 
PCA analysis, and the component scores from the 
neighborhood PCA analysis. First-order autocorrelation 
among response times was accounted for by including the 
directly preceding response time in each trial (i.e., RTt-1) in 

6



each model. In naming tasks, slow and fast responses are 
often followed by slow and fast responses, respectively 
(Taylor & Lupker, 2001). These carryover effects may 
reflect a slowing of time perception after more difficult 
trials (Taylor & Lupker, 2006; Taylor & Lupker, 2007), 
which importantly could occur in any task involving 
judgments on multiple stimuli. Inclusion of this measure can 
substantially decrease the degree of residual variance in a 
model, and thus decreases the standard errors of variables of 
interest.  

The second model assessed the unique effects of the 
modality-specific semantic variables while controlling for 
the above variables. Separate models were fitted to decision 
latencies in each task. Within each task, three models were 
fitted corresponding to all responses, responses for living 
thing items, and nonliving thing decision latencies to assess 
the extent to which the effects of these variables differ as a 
function of object domain. In addition, a recent theoretical 
analysis and accompanying simulation studies (Barr, Levy, 
Scheepers, & Tily, 2013) demonstrated that by-subject 
random slopes for predictor variables of interest should be 
included in linear mixed-effects models whenever possible. 
Given the relatively large number of predictors in the 

current step 2 models, fitting a maximal random effects 
structure was not possible in most cases due to failure of the 
estimation algorithm to converge. However, given the 
importance of including by-subject random slopes for 
variables of theoretical interest (in contrast to control 
variables), these random effects terms were included for 
certain semantic variables in each model as follows. I fitted 
an initial model containing all the control variables and the 
semantic variables, including random effects of by-subject 
and by-item intercepts. In a subsequent model I added 
random effects of by-subject slopes for any semantic 
variable that had a probability value of less than 0.05 in the 
initial model based on 100,000 iterations of Markov chain 
Monte Carlo sampling (Baayen et al., 2008). The bottom 
half of Table 2 presents the standardized coefficients for 
each semantic variable in the subsequent model, where 
statistical significance (*p < .05; **p < .01; ***p < .001) is 
based on the standard normal distribution (computing 
probability values using Markov chain Monte Carlo 
sampling for mixed-effects models with by-subject random 
slopes is not trivial and is not attempted here). 

 

 
Table 2: Standardized coefficients from two-step hierarchical mixed-effects regression analyses of decision latencies from 
two semantic decision tasks and a lexical decision task. Initial models containing form and lexical variables were fitted on 
decision latencies for all items, living thing items, and nonliving thing items. Second-step models were forced to include 
these same variables and seven modality-specific semantic variables, in addition to by-subject random slopes for certain 
semantic variables (see text for details). Initial variance signifies the percentage of variance due to item variability that was 
accounted for by the form and lexical variables in the initial models (see text for calculations). Residual variance signifies 
the percentage of variance due to items accounted for by the semantic variables over and above the initial variables in the 
second models. Total variance is the sum of each, and constitutes the total percentage of explained variance. CS: principal 
component scores. * p < .01; ** p < .001. 
 
Variable Living / Nonliving Concrete / Abstract Word / Nonword 
Form & Lexical Total LT NLT Total LT NLT Total LT NLT 
RT -1 .165**  .181**  .158**  .050**  .106** .144**  .185**  .208** .169** 
Length (CS) -.003 -.051  .029 -.021 -.066  .020  .027 -.009  .057 
Neighborhood (CS)  .008 -.036  .068*  .017  .002  .041  .018 -.015  .061 
Word frequency -.118** -.184** -.118** -.126** -.171** -.146** -.204** -.244** -.214** 
Familiarity  .019  .077 -.065* -.063* -.058 -.096* -.090** -.084 -.127** 
Initial variance 13%  21% 51% 22% 30% 40% 53% 46% 75% 
Semantic          
Pain likelihood -.033 -.078  .017 -.052 -.075 -.035 -.054 -.089  .002 
Smell intensity -.031  .013 -.058 -.071 -.030 -.048 -.047  .010 -.095 
Color vividness -.042† -.057 -.006 -.031 -.005 -.041 -.038 -.059†  .063 
Taste pleasantness -.008  .013  .198 -.030  .036 -.031 -.034  .032 -.003 
Sound intensity  .012 -.001 -.043  .006  .004 -.050 -.019 -.061 -.048 
Graspability  .049  .085 -.027 -.012  .083 -.067  .033  .066 -.028 
Visual motion -.090** -.101  .048 -.043  .059  .023  .003 -.009  .039 
Residual variance 18% 26% 3% 11% 6% 1% 6% 9% 3% 
Total variance 31% 47% 54% 33% 36% 41% 59% 55% 78% 
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Results 
Accuracy 

Mean accuracy in the living/nonliving task was 96% and 
ranged from 83% to 100% (one participant). Mean accuracy 
in the concreteness task was 94% and ranged from 77% to 
100% (one participant). 

 
Living/nonliving decision latencies 

 Three items were excluded from analyses: “pepper” and 
“stork,” for low accuracy (< 50%), and “nightingale” for 
disproportionate model influence (i.e., the inclusion of this 
outlier would have a disproportionately large influence on 
model estimates). Overall average latency was 686 ms 
(living things: 678 ms; nonliving things: 693 ms). 

Table 2 contains the standardized coefficients in all 
statistical models. In addition, the variance components in 
mixed-effects models can reveal the degree to which the 
item-based variability is due specifically to item 
characteristics (Locker, Hoffman, & Bovaird, 2007). For 
example, in the initial model of living thing RTs, the 
variance of the by-item random effect in the fitted model (s2 
= .069) is divided by the variance of the by-item random 
effect in an “empty” model including the same random 
effects structure but excluding the item characteristics (s2 = 
.087). Therefore the proportion of by-item variability 
accounted for by the item characteristics in the initial model 
is 21% (1 – (.069 / .087)). In the second (semantic variables 
included) model of living thing RTs, the variance of the by-
item random effect in the fitted model is divided by the 
variance of the by-item random effect in the initial fitted 
model, from which one can compute the percentage of 
residual item-based variance explained by the modality-
specific predictors. These percentages are shown for every 
model in Table 2. This may be a more useful measure than 
the typically reported R2, because the denominator of R2 
(i.e., total variability) encompasses variability due to 
subjects and to error, which are independent of the item 
characteristics. 
 
Concreteness decision latencies 

Two items, “fawn,” and “nightingale,” were removed 
from analyses due to low accuracy (< 50%) and 
disproportionate model influence, respectively. Overall 
average latency was 789 ms (abstract items: 856 ms; 
concrete items: 753 ms). Within concrete items, average 
latencies for living and nonliving thing items were 738 ms 
and 767 ms respectively. See Table 2 for statistical results. 

Discussion  
Among the lexical and form variables, word frequency 

generally was the strongest predictor of decision latencies 
for all sets of items in both tasks, followed by familiarity 
and neighborhood.  

 

Living / nonliving decision latencies 
Among the semantic variables, higher visual motion and 

graspability were associated with faster decisions among all 
items. Higher visual motion and, to a lesser extent, higher 
pain likelihood and color vividness were associated with 
faster decisions among living thing items. No semantic 
variables significantly predicted nonliving thing decision 
latencies. The significant effect of visual motion was not 
surprising given its ability to differentiate between living 
and nonliving things (Cree & McRae, 2003). The 
unpredicted marginal influence of pain likelihood among 
living thing items is interesting in that animals with high 
pain likelihood ratings (e.g., alligator, python) were not 
necessarily typical “living things.” Nineteen of the 20 fastest 
latencies across decision categories were members of the 
“creatures” category. In addition, decision latencies were 
fastest for the creature category and slowest for the 
nonliving thing category, which suggests that the 
living/nonliving decision criterion caused a domain-level 
typicality effect (i.e., participants may have treated 
“animals” as prototypical “living things”).  

To assess the possibility of a typicality effect within the 
creature category, I obtained typicality ratings for these 
concepts available from O’Connor, Cree, and McRae 
(2009), in which participants rated how typical each word 
was of the corresponding category (“animal”). No 
association was present between typicality and decision 
latency among items that belong to the “animal” category 
(R2 = .03), consistent with the presence of a between-
category typicality effect but the absence of a within-
category typicality effect. Although not shown in Table 1, I 
also fitted separate models to the decision latencies for 
creatures and fruits and vegetables. Significant conceptual 
variables for creatures were likelihood of pain and taste 
pleasantness, and the only significant variable for fruits and 
vegetables was color intensity. Therefore, the inclusion of 
fruits and vegetables in the living/nonliving decision task 
may have posed a particular difficulty, despite the 
instructions to categorize all living things together. 

In contrast to the finding of multiple semantic predictors 
of living thing decision latencies, none of the semantic 
variables significantly predicted nonliving thing decision 
latencies. The total item-based variance in the living and 
nonliving latencies that was accounted for by all predictors 
was 47% and 54% respectively. However, the semantic 
variables only accounted for 3% of additional variance in 
the nonliving decision latencies, as compared to 26% of 
additional variance in the living thing decision latencies. 
The lack of influence of semantic variables in accounting 
for nonliving thing latencies is somewhat puzzling given 
that nonliving things can vary to some extent on all of these 
modality-specific attributes. It is possible that participants 
primarily used function-based knowledge for positive 
evidence of membership in the nonliving thing category. 
The most salient difference between nonliving thing 
concepts and living thing concepts in the McRae et al. 
(2005) norms is the greater number of function features 
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(e.g., “used for cooking”) listed for nonliving things (Cree 
& McRae, 2003). However, functional knowledge by 
definition involves more than the sensory properties or 
motor affordances associated with a given object category. 
In part for this reason, the Amsel et al. (2012) attribute 
norms do not contain ratings of function, and although 
graspability ratings may be correlated with function for 
certain object categories (i.e., tools), the relationship is 
likely less prominent or nonexistent for many other object 
categories. 
Concreteness decision latencies 

 Faster decisions were significantly associated with higher 
smell intensity and likelihood of pain ratings. The olfactory 
effect is an independent replication of Amsel et al. (2012) 
and suggests that smell-related knowledge may be a central 
cue to concreteness—specifically in online concreteness 
judgments. In fact, Amsel et al. (2012) collected response 
times for ratings of seven sensory/motor attributes and 
showed that olfactory and gustatory attributes were rated 
more quickly than the other five attributes. Perhaps the 
profile of perceptual knowledge types that most effectively 
cues concreteness varies not only by the level of 
concreteness (Connell & Lynott, 2012) but also according to 
the temporal task constraints (i.e., how quickly knowledge 
is accessed in the service of successful task performance).  

Finally, the slower average latencies for the concreteness 
task versus the living/nonliving thing task appear to 
contradict an earlier suggestion about task differences. It 
was suggested that performing the living/nonliving thing 
decision task requires accessing specific information about 
the object to which a noun refers whereas the concreteness 
task merely requires accessing the knowledge that the noun 
refers to an object—any object will do. Why then did 
participants respond more quickly in the former task? One 
possibility is the difference in scope between the set of all 
concrete entities versus all concrete or abstract concepts 
(i.e., all concepts). Perhaps the living/nonliving task enables 
participants to maintain a more constrained attentional set of 
possible upcoming stimuli, which translates into faster 
semantic access and/or decision processes. Reviewers 
suggested the additional possibilities that the conceptual 
representations of living things might be particularly rich in 
comparison to the less rich and possibly more difficult to 
access representations of nonliving things, and that people 
may be more familiar with discriminating between living 
and nonliving things versus concrete and abstract decisions.  

Experiment 3: Lexical decision task 
 In contrast with the semantic decision tasks, which 

unarguably require recruitment of semantic information, 
lexical decisions do not logically require access to semantic 
information. Positive evidence that a letter string is a valid 
English word could solely consist of amount of prior 
perceptual experience with a particular letter string. That 
said, the influence of semantic knowledge on lexical 
decisions is clear (Becker, Moscovitch, Behrmann, & 
Joordens, 1997; Joordens & Becker, 1997), including effects 

of semantic richness (e.g., Grondin et al., 2009; Pexman et 
al., 2002, 2008). 

 Facilitation in the lexical decision task has been reported 
for a number of sensory or motor-related semantic 
measures. Faster response times have been linked to words 
associated with higher scores on number of listed visual 
form, tactile, and taste features (Grondin et al., 2009), 
perceptual strength ratings (Connell & Lynott, 2012), body-
object interaction ratings (Siakaluk, Pexman, Aguilera, 
Owen, & Sears, 2008), and sensory experience ratings 
(Juhasz, Yap, Dicke, Taylor, & Gullick, 2011). Words 
denoting entities rated high on usefulness or danger are 
recognized faster and more accurately after controlling for 
several variables (see overview in Wurm, 2007), and Amsel 
et al. (2012) showed that their pain likelihood and smell 
intensity measures may be highly correlated with Wurm’s 
(2007) danger and usefulness ratings, respectively. Finally, 
Amsel et al.’s (2012) re-analysis of the Grondin et al. (2009) 
lexical decision latencies revealed significant effects of 
visual motion and taste pleasantness ratings.  

 This growing body of studies suggests that our 
knowledge about the sensory/motor properties of objects 
and our perceptual and physical experiences with those 
objects both appear to influence how quickly we can 
recognize words referring to those objects. Experiment 3 
adds to this endeavor by assessing the influences of several 
modality-specific variables on lexical decision latencies for 
words referring to living and nonliving thing concepts. 

Methods 
Participants 

Thirty undergraduate students (17-24 years; 16 females) 
at UTSC participated for course credit. Participants had 
normal or corrected-to-normal vision and reported no 
neurological impairment. Inclusion criteria included right-
handedness, and > 10 years speaking English as a first 
language.  
Materials 

 The 207 experimental items were identical to 
Experiments 1-2. The 207 nonwords were generated from 
the English Lexicon Project by changing one or two letters 
in a target word, where the location of the letter change 
alternated across different words including early, middle, 
and late positions. The pronounceable nonwords (e.g., 
“yait,” “tane”) occupy a middle ground in the range from 
most word-like (pseudohomophones: “dait”) to least word-
like (non-pronounceable: “dtia”) nonwords. 
Procedure 

The procedure was identical to Experiments 1-2 with the 
exception of the decision criterion: participants were 
instructed to decide as quickly and accurately as possible 
whether each letter string denoted a valid English word. 
Given that decision latencies for valid letter strings were of 
interest, all participants responded to these stimuli with their 
right hands. 
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Statistical analysis 
Statistical analysis was identical to the analysis used in 

Experiments 1-2. 

Results 
Accuracy 

 One subject’s data were removed from further analyses 
due to low accuracy (59%). For the remaining participants, 
mean accuracy was 93% and ranged from 90% to 99%.  
Decision latency 

Overall average latency for the 207 experimental items 
was 604 ms. Average latencies for living and nonliving 
thing items are 602 and 607 ms, respectively. Table 2 
presents statistical results including model estimates for all 
items and living and nonliving thing items separately. 

Discussion  
 Consistent with past literature (e.g., Balota et al., 2004; 

Yap & Balota, 2009), word frequency exerted a particularly 
strong influence on lexical decision latency for both living 
and nonliving thing items. Not surprisingly, rated familiarity 
for living thing concepts and especially nonliving thing 
concepts were also strong predictors. More interesting are 
the significant influences of modality-specific attributes. 
Higher ratings of pain likelihood and smell intensity were 
associated with faster lexical decisions among all items. The 
effect of pain likelihood appears to be domain-specific. It is 
entirely driven by the living thing items, despite the fact that 
the ten words with the highest likelihood of pain ratings are 
all nonliving things (e.g., “whip,” “cannon,” “bomb”). 
Similarly, the overall significant effect of smell intensity 
appears to be exclusively driven by the nonliving thing 
items. Examples of nonliving things rated highest on smell 
intensity are “toaster,” “oven,” and “tractor,” which is 
interesting because these objects do not emit odors directly 
but rather are experienced in close proximity to odor-
producing organic matter. This particular finding suggests 
that people may be activating real-world situational 
knowledge that in turn could constitute positive evidence for 
a word judgment in the lexical decision task. A domain-
level difference also appears in the residual variance 
explained by the control variables and semantic variables. 
Among nonliving thing items, the semantic variables only 
explained 4% of the item-based variance whereas these 
same variables accounted for 16% of the item-based 
variance among the living thing concepts. 

 The influence of these modality-specific conceptual 
variables on lexical decision latencies strengthens the 
assertion that knowledge related to perceptual experience is 
not only accessed during word processing but can be used to 
shape decisions that can be made without this level of 
conceptual specificity. These results also suggest that word 
recognition researchers may want to take into account 
domain-level information when designing and analyzing 
future studies. Finally, the finding that variables related to 
perceptuomotor knowledge about a word’s referent can 
influence lexical decision times is not consistent with 

mental lexicon models of lexical decision task performance. 
According to these models (e.g., Coltheart, Rastle, Perry, 
Langdon, & Ziegler, 2001; Levelt, 1989), this task requires 
checking whether the orthographic input matches an 
existing entry in a mental lexicon. It is unclear why this 
process should be expedited when the input refers to a 
particularly colorful or smelly object. The present results are 
most consistent with “lexicon-free” models in which 
semantic access is an obligatory process initiated upon 
presentation of any orthographic form (e.g., Dilkina, 
McClelland, & Plaut, 2010; Elman, 2004; Laszlo & 
Federmeier, 2011; Plaut et al., 1996). 

General Discussion 
The present study assessed the effects of seven different 

measures of modality-specific knowledge on behavioral 
decision latencies from three tasks varying in the depth of 
semantic discrimination (living/nonliving; concrete/abstract; 
word/nonword). After controlling for the non-semantic 
variables, modality-specific semantic variables influenced 
decision latencies in each task. These data suggest that when 
we encounter an object name in the context of a decision 
task, our response to that word can be shaped by our 
knowledge about how the object looks, feels, and smells as 
well as by our knowledge of the likelihood that it would be 
in motion and even cause pain. 

It is important to acknowledge the exploratory nature of 
these analyses. Several different kinds of modality-specific 
predictors were examined, and in some cases specific 
theory-driven predictions about how a particular type of 
knowledge should influence performance in a specific task 
were unavailable. At first glance, the divergence in the 
effects of these modality-specific variables across tasks, and 
among recent studies, appears to be a concern. In 
comparison with word frequency, for example, the 
influences of specific kinds of knowledge are much smaller 
in magnitude and are less likely to produce robust effects 
across different tasks and experiments. However, our 
understanding of how knowledge is organized and accessed 
in semantic memory across different contexts will be 
increased by determining (1) which among recently created 
measures of conceptual knowledge are recruited during 
semantic and lexical decision tasks and (2) the magnitudes 
of their influences.  

The results of the concreteness and lexical decision 
experiments (along with Amsel et al., 2012, and Grondin et 
al., 2009) converge to cement the importance of knowledge 
types beyond vision—particularly gustatory and olfactory 
information. Smell intensity and number of taste features 
were significant predictors of lexical and concreteness 
decision latencies in the current experiment and Grondin et 
al. (2009), respectively. Why should concreteness and 
especially lexical decisions be facilitated for words that 
refer to particularly smelly or tasty objects? For one, “if 
people have eaten something, then they know it is concrete, 
and they know that its name is a word” (Grondin et al., 
2009, p 13). Functional neuroimaging studies show that 
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silently reading words that refer to objects with particularly 
salient tastes and smells leads to increased activation in 
olfactory (Gonzalez et al., 2006) and gustatory (Barros-
Loscertales et al., 2012) cortices in contrast to other kinds of 
words. If access to gustatory or olfactory knowledge is a 
routine part of the reading process for object nouns, then 
this information would constitute additional evidence that 
these letter strings are in fact valid English words. However, 
a reviewer points out that people could eat things for which 
they couldn’t name, or for which there is no name. They 
suggest the opposite logic: If you read a word that is 
associated with an experience of taste or smell, then you can 
be more confident that it's a word. 

Taken as a whole, the current results also highlight the 
potential importance of considering object domain in lexical 
and semantic decision task performance. The best predictors 
of decision latencies among all words were not the same as 
the best predictors of living thing and nonliving thing 
decision latencies in any task. In addition, the percentage of 
item-based variance explained by the semantic predictors 
was always higher for the living thing items whereas the 
form and lexical predictors always accounted for more 
variance in the nonliving thing items. That is, access to 
knowledge about the perceptible properties of objects is 
more important for processing living thing concepts when 
the task requirement is related to this distinction, but it 
remains useful even when task requirements are unrelated to 
perceptual properties. Finally, it was somewhat remarkable 
to find that the semantic variables explained more variance 
in living and nonliving thing decision latencies in the lexical 
decision task versus the concreteness decision task. Taken 
together with the recent reports of perceptually-related 
semantic effects on lexical decision performance, this result 
suggests that making a lexical decision may involve access 
to a more varied array of perceptual and motor object 
knowledge than was previously appreciated (at least by 
some researchers)—despite the fact that a positive response 
in this task could theoretically be based purely on stimulus 
familiarity. 

The present results are most consistent with a word 
recognition system wherein conceptual information acquired 
from multiple sensory modalities can be accessed quickly 
enough to inform a decision system. The different patterns 
of influence across the three tasks are also consistent with at 
least some degree of flexibility in the recognition system. 
Discussions of flexibility in lexical and semantic processing 
can be found in the computational modeling, word 
recognition, neuroimaging, and semantic memory literatures 
(see Introduction). One key assumption underlying many of 
these views is that word meanings are not static, but instead 
consist of a temporarily activated subset of available 
knowledge in long-term memory that is unavoidably 
influenced by context (e.g., Elman, 2004). According to the 
flexible lexical processor account (Balota et al., 1999; 
Balota & Yap, 2006), task-related context influences task 
performance through an attentional control mechanism that 
increases the priority of computations in a particular 

information module (e.g., phonology, meaning). This notion 
of attentional control is consistent with the current finding 
that the depth of semantic discrimination required to 
perform each decision task was at least monotonically 
associated with the proportion of item-based variance 
accounted for by the semantic variables. That said, this 
relationship broke down if separate models were fitted to 
living versus nonliving thing items, which suggests that 
increasing the depth of semantic discrimination required for 
task performance does not necessarily have a transparent 
relationship to the kind or degree of activated semantic 
knowledge. 

The current results along with previous studies 
(Bermeitinger et al., 2011; Grondin et al., 2009) can also be 
used to argue for an additional fractionation of the 
“meaning” or “semantics” modules in various word 
recognition models (Balota et al., 1999; Plaut et al., 1996), 
whereby a particular kind of conceptual information (e.g., 
visual, motor, taste knowledge) can be activated in some 
contexts and not others. An important challenge for future 
research is to determine the level of specificity that 
attentional control (or any neural mechanism of endogenous 
control) can exert on access to finer-grained conceptual 
content such as visual versus motor knowledge, or even 
different kinds of visual knowledge. 

The flexible lexical processor and many connectionist 
models of word recognition (Seidenberg, 2005) posit 
separate components of orthography, phonology, and 
meaning. As a more general theory of lexical processing, 
Barsalou and colleagues’ LASS account assumes that 
processing pictures, words, scents, or any other meaningful 
stimulus involves a mixture of simulation and language 
systems, where simulation is defined as partial re-
activations of patterns of activity originally involved in 
sensory/motor processes that enable deep conceptual 
processing (e.g., relations between features, concepts, and 
categories). Barsalou et al. (2008) assume that simulations 
can become activated somewhat rapidly and automatically, 
but that statistical regularities entrenched in a mature 
language system can influence task performance even more 
rapidly following word onset. Simmons et al. (2008) 
provided fMRI evidence for a neurocognitive distinction 
between these two systems. They determined which brain 
regions were specifically more activated when people 
performed a word association task (versus a situation 
generation task), and vice versa. They then asked 
participants to list properties of objects for several seconds. 
In support of the LASS theory, they showed that the 
anatomical distribution of BOLD activity during early 
property listing (less than 7 sec.) and late property listing 
(greater than 7 sec.) was more similar to the activations 
during the word association task and situation generation 
task, respectively. In addition, recent experiments by 
Louwerse and colleagues have supported the main 
assumptions of LASS theory (M. Louwerse & Connell, 
2011; M. M. Louwerse, 2008; M. M. Louwerse & Jeuniaux, 
2010). LASS theory makes two claims that are supported by 
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the present data. Most generally, Barsalou et al. (2008) 
argue for context-dependent flexible recruitment of 
conceptual and linguistic information: “We assume that 
different mixtures of the two systems underlie a wide 
variety of tasks. […] Depending on task conditions, 
conceptual processing may mostly consist of linguistic 
processing or simulation. Under many conditions, both may 
contribute equally. We assume that both processes are 
typically engaged to some extent” (p. 251). 

The current results are consistent with the LASS 
assumption of different mixtures of the simulation and 
language systems, and suggest that the influence of (1) 
activated conceptual information in multiple modalities, and 
(2) form-based and lexical information vary flexibly on the 
basis of the decision criteria and its interaction with object 
domain. Performance in the living/nonliving thing decision 
task is based on specific knowledge about the nature of 
concrete objects, and was influenced more by semantic 
variables than form-based and lexical variables according to 
item-based variance proportions. Conversely, in the lexical 
decision task form and lexical variables explained almost 
ten times more item-related variance in decision latencies 
than did semantic variables.  

Taken together, the current results along with comparable 
recent work suggest that a surprisingly diverse variety of 
modality-specific conceptual knowledge types are accessed 
in a flexible manner during semantic and lexical decision 
tasks. The lexical decision results in particular are most 
consistent with “lexicon-free” models in which semantic 
access is obligatory (e.g., Dilkina et al., 2010; Elman, 2004; 
Laszlo & Federmeier, 2011; Plaut et al., 1996) and less 
consistent with models that posit a separate mental lexicon 
(e.g., Coltheart et al., 2001; Levelt, 1989). In sum, alongside 
other recent work in this area (Amsel et al., 2012; Connell & 
Lynott, 2012; Juhasz et al., 2011; Lynott & Connell, 2013; 
Pexman et al., 2008; Siakaluk et al., 2008a, 2008b; Wurm, 
2007; Yap et al., 2011), the current results bring us a little 
closer to understanding how our experiences with objects in 
our environment can influence reading and decision-
making. 
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